Prediction of Notes from Vocal Time Series Produced by Singing Voice

dc.contributor.authorGarczarek, Ursulade
dc.contributor.authorLigges, Uwede
dc.contributor.authorWeihs, Clausde
dc.date.accessioned2004-12-06T18:39:42Z
dc.date.available2004-12-06T18:39:42Z
dc.date.issued2003de
dc.description.abstractAiming at optimal prediction of the correct note corresponding to a vocal time series we trained a classification algorithm on the basis of parts of interpretations of Tochter Zion (Händel) and tested the algorithm on the remaining parts. As classification algorithm we use a radial basis function support vector machine together with a “Hidden Markov” method as a dynamisation mechanism and some smoothing for categorical data. With this we were able to obtain a minimum of 5% average classification error and a maximum of 26% on data from an experiment with 16 singers.en
dc.format.extent309399 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/2003/4921
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-6842
dc.language.isoende
dc.publisherUniversitätsbibliothek Dortmundde
dc.subjectradial basis functionsen
dc.subjectsupport vector machinesen
dc.subjectclassificationen
dc.subjecttime seriesen
dc.subjectpredictionen
dc.subjectsinging voiceen
dc.subject.ddc310de
dc.titlePrediction of Notes from Vocal Time Series Produced by Singing Voiceen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tr01-03.pdf
Size:
302.15 KB
Format:
Adobe Portable Document Format
Description:
DNB