Block-recursive non-Gaussian structural vector autoregressions
dc.contributor.author | Keweloh, Sascha Alexander | |
dc.contributor.author | Hetzenecker, Stephan | |
dc.contributor.author | Seepe, Andre | |
dc.date.accessioned | 2021-11-09T15:05:40Z | |
dc.date.available | 2021-11-09T15:05:40Z | |
dc.date.issued | 2021 | |
dc.description.abstract | This study combines block-recursive restrictions with higher-order moment conditions to identify and estimate non-Gaussian structural vector autoregressions. The estimator allows to impose a block-recursive structure on the SVAR and for a given block-recursive structure we derive a conservative set of assumptions on the dependence and Gaussianity of the shocks to ensure identification. We use a Monte Carlo simulation to illustrate the advantages of the proposed blockrecursive estimator compared to unrestricted, purely data driven estimators in small samples. The block-recursive estimator is used to analyze the interdependence of monetary policy and the stock market. We find that a positive stock market shock contemporaneously increases the nominal interest rate, while contractionary monetary policy shocks lead to lower stock returns on impact. | en |
dc.identifier.uri | http://hdl.handle.net/2003/40548 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-22417 | |
dc.language.iso | en | de |
dc.relation.ispartofseries | Discussion Paper / SFB823;23/2021 | |
dc.subject | SVAR | en |
dc.subject | monetary policy | en |
dc.subject | stock market | en |
dc.subject | block-recursive | en |
dc.subject | non-Gaussianity | en |
dc.subject | identification | en |
dc.subject.ddc | 310 | |
dc.subject.ddc | 330 | |
dc.subject.ddc | 620 | |
dc.title | Block-recursive non-Gaussian structural vector autoregressions | en |
dc.type | Text | de |
dc.type.publicationtype | workingPaper | de |
dcterms.accessRights | open access | |
eldorado.secondarypublication | false | de |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- DP_2321_SFB823_Keweloh_Hetzenecker_Seepe.pdf
- Size:
- 961.37 KB
- Format:
- Adobe Portable Document Format
- Description:
- DNB
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 4.85 KB
- Format:
- Item-specific license agreed upon to submission
- Description: