Polarimetry of photon echo on charged and neutral excitons in semiconductor quantum wells

dc.contributor.authorPoltavtsev, Sergey V.
dc.contributor.authorAkimov, Ilya A.
dc.contributor.authorYakovlev, Dmitri R.
dc.contributor.authorBayer, Manfred
dc.contributor.authorKapitonov, Yu. V.
dc.contributor.authorYugova, I. A. T.
dc.contributor.authorKarczewski, G.
dc.contributor.authorWiater, M.
dc.contributor.authorWojtowicz, T.
dc.date.accessioned2019-08-09T12:56:06Z
dc.date.available2019-08-09T12:56:06Z
dc.date.issued2019-04-05
dc.description.abstractCoherent optical spectroscopy such as four-wave mixing and photon echo generation deliver rich information on the energy levels involved in optical transitions through the analysis of polarization of the coherent response. In semiconductors, it can be applied to distinguish between different exciton complexes, which is a highly non-trivial problem in optical spectroscopy. We develop a simple approach based on photon echo polarimetry, in which polar plots of the photon echo amplitude are measured as function of the angle φ between the linear polarizations of the two exciting pulses. The rosette-like polar plots reveal a distinct difference between the neutral and charged exciton (trion) optical transitions in semiconductor nanostructures. We demonstrate this experimentally by photon echo polarimetry of a CdTe/(Cd, Mg)Te quantum well. The echoes of the trion and donor-bound exciton are linearly polarized at the angle 2φ with respect to the first pulse polarization and their amplitudes are weakly dependent on φ. While on the exciton the photon echo is co-polarized with the second exciting pulse and its amplitude scales as cosφ.en
dc.identifier.urihttp://hdl.handle.net/2003/38173
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-20152
dc.language.isoenen
dc.relation.ispartofseriesScientific reports;Jg.: 9. 2019. S. 5666-1-5666-9en
dc.subjectOptical spectroscopyen
dc.subjectNonlinear opticsen
dc.subject.ddc530
dc.titlePolarimetry of photon echo on charged and neutral excitons in semiconductor quantum wellsen
dc.typeTextde
dc.type.publicationtypearticlede
dcterms.accessRightsopen access
eldorado.secondarypublicationtruede
eldorado.secondarypublication.primarycitationScientific reports. 9. 2019, S. 5666-1-5666-9en
eldorado.secondarypublication.primaryidentifierhttps://doi.org/10.1038/s41598-019-42208-8de

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41598-019-42208-8.pdf
Size:
1.68 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: