Sieve maximum likelihood estimation in a semi-parametric regression model with errors in variables

dc.contributor.authorBelomestny, Denis
dc.contributor.authorKlochkov, Egor
dc.contributor.authorSpokoiny, Vladimir
dc.date.accessioned2016-04-12T13:01:21Z
dc.date.available2016-04-12T13:01:21Z
dc.date.issued2016
dc.description.abstractThe paper deals with a semi-parametric regression problem under deterministic and regular design which is observed with errors. We first linearise the problem using a sieve approach and then apply the total penalised maximum likelihood estimator to the linearised model. Sufficient conditions for √n-consistency and efficiency under parametric assumption are derived and a possible misspecification bias under different smoothness assumptions on the design is analysed. The Monte Carlo simulations show the performance of the estimator with simulated data.en
dc.identifier.urihttp://hdl.handle.net/2003/34888
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-16936
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB823;15, 2016en
dc.subjecterrors-in-variables modelen
dc.subject√n-consistencyen
dc.subjectregressionen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleSieve maximum likelihood estimation in a semi-parametric regression model with errors in variablesen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_1516_SFB823_Belomestny_Klochkov_Spokoiny.pdf
Size:
4.85 MB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.12 KB
Format:
Item-specific license agreed upon to submission
Description: