A Bayesian tune of the Herwig Monte Carlo event generator
Loading...
Date
2023-10-26
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The optimisation (tuning) of the free parameters of Monte Carlo event generators by comparing their predictions with data is important since the simulations are used to calculate experimental efficiency and acceptance corrections, or provide predictions for signatures of hypothetical new processes in experiments. We present a tuning procedure that is based on Bayesian reasoning and that allows for a proper statistical interpretation of the results. The parameter space is fully explored using Markov Chain Monte Carlo. We apply the tuning procedure to the Herwig7 event generator with both the cluster and the string hadronization models and a large set of measurements from hadronic Z-boson decays produced at LEP in e+e- collisions. Furthermore, we introduce a coherent propagation of uncertainties from the realm of parameters to the realm of observables and we show the effects of including experimental correlations of the measurements. To allow comparison with the approaches of other groups, we repeat the tuning considering weights for individual measurements.
Description
Table of contents
Keywords
Analysis and statistical methods, Pattern recognition, cluster finding, calibration and fitting methods