Convergence of spectral density estimators in the locally stationary framework

dc.contributor.authorKawka, Rafael
dc.date.accessioned2019-10-02T14:28:23Z
dc.date.available2019-10-02T14:28:23Z
dc.date.issued2019
dc.description.abstractLocally stationary processes are characterised by spectral densities that are functions of rescaled time. We study the asymptotic properties of spectral density estimators in the locally stationary framework. In particular, we show that for a locally stationary process with time-varying spectral density function f(u; ) standard spectral density estimators consistently estimate the time-averaged spectral density R 1 0 f(u; ) du. This result is complemented by some illustrative examples and applications including HAC-inference in the multiple linear regression model and a simple visual tool for the detection of unconditional heteroskedasticity.en
dc.identifier.urihttp://hdl.handle.net/2003/38260
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-20230
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB823;23/2019
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.subject.rswkDichteschätzungde
dc.subject.rswkZeitreihenanalysede
dc.titleConvergence of spectral density estimators in the locally stationary frameworken
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access
eldorado.secondarypublicationfalsede

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_2319_SFB823_Kawka.pdf
Size:
878.48 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: