Learning action oriented perceptual features for robot navigation

dc.contributor.authorMorik, Katharinade
dc.contributor.authorRieger, Ankede
dc.date.accessioned2004-12-06T12:53:29Z
dc.date.available2004-12-06T12:53:29Z
dc.date.created1993de
dc.date.issued1999-10-26de
dc.description.abstractMachine learning can offer an increase in the flexibility and applicability of robotics at several levels of control. In this paper, we characterize two symbolic learning tasks in the field of robotics. We outline an approach for learning features from sensory data and for using these features to learn more complex ones. We illustrate our approach with first experiments in the field of navigation. The paper is written in English.en
dc.format.extent182493 bytes
dc.format.extent200115 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.issn0943-4135de
dc.identifier.urihttp://hdl.handle.net/2003/2578
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-14889
dc.language.isoende
dc.publisherUniversität Dortmundde
dc.relation.ispartofseriesForschungsberichte des Lehrstuhls VIII, Fachbereich Informatik der Universität Dortmund ; 3de
dc.subject.ddc004de
dc.titleLearning action oriented perceptual features for robot navigationen
dc.typeTextde
dc.type.publicationtypereport
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
V0UEML8I.pdf
Size:
178.22 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
V0UEML8I.ps
Size:
195.42 KB
Format:
Postscript Files