Learning action oriented perceptual features for robot navigation
dc.contributor.author | Morik, Katharina | de |
dc.contributor.author | Rieger, Anke | de |
dc.date.accessioned | 2004-12-06T12:53:29Z | |
dc.date.available | 2004-12-06T12:53:29Z | |
dc.date.created | 1993 | de |
dc.date.issued | 1999-10-26 | de |
dc.description.abstract | Machine learning can offer an increase in the flexibility and applicability of robotics at several levels of control. In this paper, we characterize two symbolic learning tasks in the field of robotics. We outline an approach for learning features from sensory data and for using these features to learn more complex ones. We illustrate our approach with first experiments in the field of navigation. The paper is written in English. | en |
dc.format.extent | 182493 bytes | |
dc.format.extent | 200115 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | application/postscript | |
dc.identifier.issn | 0943-4135 | de |
dc.identifier.uri | http://hdl.handle.net/2003/2578 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-14889 | |
dc.language.iso | en | de |
dc.publisher | Universität Dortmund | de |
dc.relation.ispartofseries | Forschungsberichte des Lehrstuhls VIII, Fachbereich Informatik der Universität Dortmund ; 3 | de |
dc.subject.ddc | 004 | de |
dc.title | Learning action oriented perceptual features for robot navigation | en |
dc.type | Text | de |
dc.type.publicationtype | report | |
dcterms.accessRights | open access |