Semiparametric estimation of INAR models using roughness penalization

dc.contributor.authorFaymonville, Maxime
dc.contributor.authorJentsch, Carsten
dc.contributor.authorWeiß, Christian H.
dc.contributor.authorAleksandrov, Boris
dc.date.accessioned2023-07-25T12:40:23Z
dc.date.available2023-07-25T12:40:23Z
dc.date.issued2022-09-21
dc.description.abstractPopular models for time series of count data are integer-valued autoregressive (INAR) models, for which the literature mainly deals with parametric estimation. In this regard, a semiparametric estimation approach is a remarkable exception which allows for estimation of the INAR models without any parametric assumption on the innovation distribution. However, for small sample sizes, the estimation performance of this semiparametric estimation approach may be inferior. Therefore, to improve the estimation accuracy, we propose a penalized version of the semiparametric estimation approach, which exploits the fact that the innovation distribution is often considered to be smooth, i.e. two consecutive entries of the PMF differ only slightly from each other. This is the case, for example, in the frequently used INAR models with Poisson, negative binomially or geometrically distributed innovations. For the data-driven selection of the penalization parameter, we propose two algorithms and evaluate their performance. In Monte Carlo simulations, we illustrate the superiority of the proposed penalized estimation approach and argue that a combination of penalized and unpenalized estimation approaches results in overall best INAR model fits.en
dc.identifier.urihttp://hdl.handle.net/2003/42018
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-23854
dc.language.isoende
dc.relation.ispartofseriesStatistical methods & applications;32(2)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subjectCount dataen
dc.subjectPenalized estimationen
dc.subjectInteger-valued autoregressionsen
dc.subjectInnovation distributionen
dc.subjectValidationen
dc.subject.ddc310
dc.titleSemiparametric estimation of INAR models using roughness penalizationen
dc.typeTextde
dc.type.publicationtypeArticlede
dcterms.accessRightsopen access
eldorado.secondarypublicationtruede
eldorado.secondarypublication.primarycitationFaymonville, M., Jentsch, C., Weiß, C.H. et al. Semiparametric estimation of INAR models using roughness penalization. Stat Methods Appl 32, 365–400 (2023). https://doi.org/10.1007/s10260-022-00655-0de
eldorado.secondarypublication.primaryidentifierhttps://doi.org/10.1007/s10260-022-00655-0de

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s10260-022-00655-0.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: