Testing for Symmetric Error Distribution in Nonparametric Regression Models
dc.contributor.author | Dette, Holger | de |
dc.contributor.author | Neumeyer, Natalie | de |
dc.date.accessioned | 2004-12-06T18:40:53Z | |
dc.date.available | 2004-12-06T18:40:53Z | |
dc.date.issued | 2003 | de |
dc.description.abstract | For the problem of testing symmetry of the error distribution in a nonparametric regression model we propose as a test statistic the difference between the two empirical distribution functions of estimated residuals and their counterparts with opposite signs. The weak convergence of the difference process to a Gaussian process is shown. The covariance structure of this process depends heavily on the density of the error distribution, and for this reason the performance of a symmetric wild bootstrap procedure is discussed in asymptotic theory and by means of a simulation study. In contrast to the available procedures the new test is also applicable under heteroscedasticity. | en |
dc.format.extent | 183414 bytes | |
dc.format.extent | 374065 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | application/postscript | |
dc.identifier.uri | http://hdl.handle.net/2003/4973 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-15099 | |
dc.language.iso | en | de |
dc.publisher | Universitätsbibliothek Dortmund | de |
dc.subject | empirical process of residuals | en |
dc.subject | testing for symmetry | en |
dc.subject | nonparametric regression | en |
dc.subject.ddc | 310 | de |
dc.title | Testing for Symmetric Error Distribution in Nonparametric Regression Models | en |
dc.type | Text | de |
dc.type.publicationtype | report | en |
dcterms.accessRights | open access |