Testing for Symmetric Error Distribution in Nonparametric Regression Models

dc.contributor.authorDette, Holgerde
dc.contributor.authorNeumeyer, Nataliede
dc.date.accessioned2004-12-06T18:40:53Z
dc.date.available2004-12-06T18:40:53Z
dc.date.issued2003de
dc.description.abstractFor the problem of testing symmetry of the error distribution in a nonparametric regression model we propose as a test statistic the difference between the two empirical distribution functions of estimated residuals and their counterparts with opposite signs. The weak convergence of the difference process to a Gaussian process is shown. The covariance structure of this process depends heavily on the density of the error distribution, and for this reason the performance of a symmetric wild bootstrap procedure is discussed in asymptotic theory and by means of a simulation study. In contrast to the available procedures the new test is also applicable under heteroscedasticity.en
dc.format.extent183414 bytes
dc.format.extent374065 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/4973
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-15099
dc.language.isoende
dc.publisherUniversitätsbibliothek Dortmundde
dc.subjectempirical process of residualsen
dc.subjecttesting for symmetryen
dc.subjectnonparametric regressionen
dc.subject.ddc310de
dc.titleTesting for Symmetric Error Distribution in Nonparametric Regression Modelsen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
11_03.pdf
Size:
179.12 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
tr11-03.ps
Size:
365.3 KB
Format:
Postscript Files