Optimal designs for multivariable spline models

dc.contributor.authorBiedermann, Stefaniede
dc.contributor.authorDette, Holgerde
dc.contributor.authorWoods, David C.de
dc.date.accessioned2009-10-29T10:25:46Z
dc.date.available2009-10-29T10:25:46Z
dc.date.issued2009-09-24de
dc.description.abstractIn this paper, we investigate optimal designs for multivariate additive spline regression models. We assume that the knot locations are unknown, so must be estimated from the data. In this situation, the Fisher information for the full parameter vector depends on the unknown knot locations, resulting in a non-linear design problem. We show that locally, Bayesian and maximin D-optimal designs can be found as the products of the optimal designs in one dimension. A similar result is proven for Q-optimality in the class of all product designs.en
dc.identifier.urihttp://hdl.handle.net/2003/26498
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-812
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823; 26/2009de
dc.subjectadditive spline modelen
dc.subjectBayesian D-optimalityen
dc.subjectmaximin D-optimalityen
dc.subjectproduct designsen
dc.subjectQ-optimalityen
dc.subject.ddc310de
dc.subject.ddc330de
dc.subject.ddc620de
dc.titleOptimal designs for multivariable spline modelsen
dc.typeTextde
dc.type.publicationtypereportde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
026.pdf
Size:
592.64 KB
Format:
Adobe Portable Document Format
Description:
DNB