Wartungsarbeiten: Am 16.01.2025 von ca. 8:00 bis 11:00 Uhr steht Ihnen das System nicht zur Verfügung. Bitte stellen Sie sich entsprechend darauf ein.
 

Bistability and oscillations in cooperative microtubule and kinetochore dynamics in the mitotic spindle

dc.contributor.authorSchwietert, Felix
dc.contributor.authorKierfeld, Jan
dc.date.accessioned2020-07-02T07:34:24Z
dc.date.available2020-07-02T07:34:24Z
dc.date.issued2020-05-01
dc.description.abstractIn the mitotic spindle microtubules attach to kinetochores via catch bonds during metaphase, and microtubule depolymerization forces give rise to stochastic chromosome oscillations. We investigate the cooperative stochastic microtubule dynamics in spindle models consisting of ensembles of parallel microtubules, which attach to a kinetochore via elastic linkers. We include the dynamic instability of microtubules and forces on microtubules and kinetochores from elastic linkers. A one-sided model, where an external force acts on the kinetochore is solved analytically employing a mean-field approach based on Fokker–Planck equations. The solution establishes a bistable force–velocity relation of the microtubule ensemble in agreement with stochastic simulations. We derive constraints on linker stiffness and microtubule number for bistability. The bistable force–velocity relation of the one-sided spindle model gives rise to oscillations in the two-sided model, which can explain stochastic chromosome oscillations in metaphase (directional instability). We derive constraints on linker stiffness and microtubule number for metaphase chromosome oscillations. Including poleward microtubule flux into the model we can provide an explanation for the experimentally observed suppression of chromosome oscillations in cells with high poleward flux velocities. Chromosome oscillations persist in the presence of polar ejection forces, however, with a reduced amplitude and a phase shift between sister kinetochores. Moreover, polar ejection forces are necessary to align the chromosomes at the spindle equator and stabilize an alternating oscillation pattern of the two kinetochores. Finally, we modify the model such that microtubules can only exert tensile forces on the kinetochore resulting in a tug-of-war between the two microtubule ensembles. Then, induced microtubule catastrophes after reaching the kinetochore are necessary to stimulate oscillations. The model can reproduce experimental results for kinetochore oscillations in PtK1 cells quantitatively.en
dc.identifier.urihttp://hdl.handle.net/2003/39190
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-21108
dc.language.isoende
dc.relation.ispartofseriesNew J. Phys.;22(5)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMitotic spindleen
dc.subjectDirectional instabilityen
dc.subjectMicrotubule dynamicsen
dc.subjectKinetochore oscillationsen
dc.subjectBistabilityen
dc.subjectStochastic simulationen
dc.subject.ddc530
dc.titleBistability and oscillations in cooperative microtubule and kinetochore dynamics in the mitotic spindleen
dc.typeTextde
dc.type.publicationtypearticlede
dcterms.accessRightsopen access
eldorado.secondarypublicationtruede
eldorado.secondarypublication.primarycitationFelix Schwietert and Jan Kierfeld 2020 New J. Phys. 22 053008de
eldorado.secondarypublication.primaryidentifierhttps://doi.org/10.1088/1367-2630/ab7edede

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Schwietert_2020_New_J._Phys._22_053008.pdf
Size:
3.97 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: