Authors: Weichert, Frank
Title: Klassifikation morphologischer und pathologischer Strukturen in koronaren Gefäßen auf Basis intravaskulärer Ultraschallaufnahmen zur klinischen Anwendung in einem IVB-System
Language (ISO): de
Abstract: Erkrankungen des Herz-Kreislaufsystems sind in Deutschland für fast 50% der Todesfälle verantwortlich. Insbesondere die Arteriosklerose (vulgo: „Arterienverkalkung“) ist dabei ein dominierendes Krankheitsbild. So ist es auch nicht verwunderlich, dass die Arteriosklerose seit den Anfängen der wissenschaftlichen Medizin ein Feld für umfangreiche Untersuchungen gewesen ist. Speziell durch den technischen Fortschritt bildgebender Verfahren war es möglich neuartige Diagnose- und Therapiemethoden zu entwickeln. Dabei hat sich gerade der intravaskuläre Ultraschall zu einem Goldstandard in der Diagnose arteriosklerotischer Erkrankungen und, in Kombination mit der intravaskulären Brachytherapie, zu einer Erfolg versprechenden Basistechnik für therapeutische Maßnahmen entwickelt. Grundvoraussetzung fast jeder bildbasierten Intervention ist aber die Separierung der Bilddaten in anatomisch und pathologisch differenzierte, saliente Regionen. In Anbetracht zunehmender, umfangreicherer Datenmengen kann eine derartige Aufarbeitung nur rechnergestützt durch Problem adaptierte Klassifikationsalgorithmen gewährleistet werden. Daher war es das Ziel dieser Arbeit, neue Methoden zur Merkmalsextraktion und Algorithmen zur Klassifikation morphologischer und pathologischer Strukturen in koronaren Gefäßen bereitzustellen. Aus der initialen Fragestellung wurde zudem zeitnah deutlich, dass das Forschungsvorhaben Anknüpfungspunkte zu weiteren hochgradig relevanten inter- und intradisziplinären Forschungsthemen, beispielsweise der Histologie, Systembiologie oder Chemietechnik, aufweist. Aber auch vonseiten der Anwendungsszenarien wurden teilweise völlig neue, innovative Wege beschritten. Exemplarisch sei ein E-Learning-Ansatz zur „Übersetzung“ digitaler Bilddaten in haptisch erfahrbare Reliefs für blinde und sehbehinderte Schülerinnen und Schüler genannt. In Anbetracht dieser partiell divergierenden Sichtweisen war auch die generalisierte, von der expliziten Fragestellung abstrahierte Umsetzung eine Ausrichtung der Arbeit. Dieser Intention folgend wurden drei wesentliche methodische und konzeptionelle Entwicklungen innerhalb der Arbeit realisiert: ein Expertensystem zur Approximation arterieller Kompartimente mittels unscharfer elliptischer Templates, ein neuartiger, effizienter Ansatz zur signaltheoretischen Extraktion textureller Merkmale und die Etablierung maschinelle Lernverfahren unter Integration von a priori Wissen. Über eine konsequente Integration statistischer Gütemaße konnte zudem eine ausgeprägte Rückkopplung zwischen Klassifikations- und Bewertungsansätzen gewährleistet werden. Gemeinsam ist allen Ansätzen das Ansinnen, trotz hoch anwendungsbezogener Umsetzungen, die fortwährende Portabilität zu beachten. In einer übergeordneten Abstraktion kann die Intention der Arbeit somit auch in der „generalisierten Nutzung signaltheoretischer Merkmale zur Klassifikation heterogener, durch texturelle Ausprägungen zu differenzierende Kompartimente mittels maschineller Lernverfahren“ verstanden werden.
Subject Headings: Medizinische Bildverarbeitung
Ellipse Fitting
Fuzzy Logik
Signalanalyse
Maschinelle Lernverfahren
Subject Headings (RSWK): Medizinische Bildgebung
Fuzzy Logic
Signalanalyse
Maschinelles Lernen
URI: http://hdl.handle.net/2003/27016
http://dx.doi.org/10.17877/DE290R-8516
Issue Date: 2010-03-31T10:13:57Z
Appears in Collections:LS 07 Graphische Systeme

Files in This Item:
File Description SizeFormat 
DISSERTATION_2010_WEICHERT.PDFDNB53.6 MBAdobe PDFView/Open


This item is protected by original copyright



All resources in the repository are protected by copyright.