Authors: Kwon, Young-Chan
Ray, Ratna B.
Ray, Ranjit
Title: Hepatitis C virus infection
Other Titles: Establishment of chronicity and liver disease progression
Language (ISO): en
Abstract: Hepatitis C virus (HCV) often causes persistent infection, and is an important factor in the etiology of fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). There are no preventive or therapeutic vaccines available against HCV. Treatment strategies of HCV infection are likely to improve with recently discovered direct antiviral agents (DAAs). However, a proportion of patients still progress to liver failure and/or HCC despite having been cured of the infection. Thus, there is a need for early diagnosis and therapeutic modalities for HCV relatedend stage liver disease prevention. HCV genome does not integrate into its host genome, and has a predominantly cytoplasmic life cycle. Therefore, HCV mediated liver disease progression appears to involve indirect mechanisms from persistent infection of hepatocytes. Studying the underlying mechanisms of HCV mediated evasion of immune responses and liver disease progression is challenging due to the lack of a naturally susceptible small animal model. We and other investigators have used a number of experimental systems to investigate the mechanisms for establishment of chronic HCV infection and liver disease progression. HCV infection modulates immune systems. Further, HCV infection of primary human hepatocytes promotes growth, induces phenotypic changes, modulates epithelial mesenchymal transition (EMT) related genes, and generates tumor initiating stem-like cells (TISCs). HCV infection also modulates microRNAs (miRNAs), and influences growth by overriding normal death progression of primary human hepatocytes for disease pathogenesis. Understanding these observations at the molecular level should aid in developing strategies for additional effective therapies against HCV mediated liver disease progression.
Subject Headings: HCV
Issue Date: 2014-08-27
Appears in Collections:Review Articles

Files in This Item:
File Description SizeFormat 
Ray_27082014_proof.pdfDNB306.89 kBAdobe PDFView/Open

This item is protected by original copyright

All resources in the repository are protected by copyright.