Authors: Rathjens, Jonathan
Title: Hierarchische Bayes-Regression bei Einbettung großer Datensätze
Language (ISO): de
Abstract: Unterraum-Einbettungen sind eine etablierte Methodik zur Reduktion großer Datensätze unter Erhalt der wesentlichen Information. In der Bayes-Regression wird die aus allen Daten geschätzte A-posteriori-Verteilung der Koeffizienten mit dem reduzierten Datensatz, der sogenannten Skizze, bis auf einen kleinen, kontrollierbaren Fehler approximiert. In dieser Arbeit soll die Verallgemeinerbarkeit dieser Methodik auf gewisse hierarchische Modelle untersucht werden. Simulationsstudien weisen auf eine gute Approximierbarkeit der Koeffizienten und der Hyperparameter hin, sofern keine Generalisierten Linearen Modelle verwendet werden. Bei normalverteilter Likelihood kann eine grundsätzliche Beschränktheit des Abstandes der Schätzer zwischen großem Datensatz und Skizze hergeleitet, für nicht-lineare Link-Funktionen dagegen widerlegt werden.
URI: http://hdl.handle.net/2003/34351
http://dx.doi.org/10.17877/DE290R-16425
Issue Date: 2015-03-05
Appears in Collections:TU-weit zugängliche Prüfungsarbeiten

Files in This Item:
File Description SizeFormat 
MA_Rathjens.pdf
  Restricted Access
1.85 MBAdobe PDFView/Open


This item is protected by original copyright



All resources in the repository are protected by copyright.