Authors: Uhlmann, E.
Prasol, L.
Roehrs, H.
Title: Process Design for Electromagnetic Forming of Magnesium Alloy AZ31 Using FE Simulation
Language (ISO): en
Abstract: Magnesium wrought alloys are outstanding lightweight materials due to their low density and high specific strength. The low formability of magnesium wrought alloy AZ31 at room temperature is increased by electromagnetic forming in comparison to quasi-static forming. For a detailed study of electro-magnetic process a coupled FE simulation must be performed. In this paper the process design for electromagnetic forming of magnesium wrought alloy AZ1 using FE simulation is presented. The complexity of an electromagnetic forming process requires the illustration of magnetic, thermal and structural dynamic domains. Moreover, it is also necessary to illustrate the electromagnetic resonant circuit RLC. Short processing time and the strong dependence of the physical domains to each other requires a coupled FE simulation. The illustration of resonant circuit and the resulting formation of magnetic field is carried out in two-dimensional rotationally symmetric model in ANSYS MAPDL using a suitable material model. As a result time-dependent and location-dependent eddy currents and Lorentz forces are estimated. Subsequently, the transmission of the estimated Lorentz forces and joule heat generation rates to ANSYS LS-DYNA is done. Due to the rotational symmetry of 2D ANSYS MAPDL model a transformation of the loads on 3D structures can be realized. The formation of an optimum deformation of a work piece in dependence of a defined die has been carried out. Here, the influence of different coil designs, die materials and geometries and RLC parameters was investigated.
Subject Headings: electromagnetic forming
magnesium wrought alloy AZ31
FE simulation
Subject Headings (RSWK): Magnetumformen
Issue Date: 2016-04-27
Is part of: 7th International Conference on High Speed Forming, April 27th-28th 2016, Dortmund, Germany
Appears in Collections:ICHSF 2016

Files in This Item:
File Description SizeFormat 
4_Uhlmann_ICHSF2016.pdfDNB1.43 MBAdobe PDFView/Open

This item is protected by original copyright

Items in Eldorado are protected by copyright, with all rights reserved, unless otherwise indicated.