Authors: Buschjäger, Sebastian
Title: Online Gauß-Prozesse zur Regression auf FPGAs
Language (ISO): de
Abstract: FPGAs köonnen als eine schnelle und energiesparende Ausführungsplattform genutzt werden, welche jedoch keinerlei Laufzeitumgebung für Dateiabstraktionen oder Peripheriezugriffe anbietet. Aus diesem Grund muss neben der eigentlichen Implementierung auch der Entwurf des umliegenden Systems erfolgen. Dieser Systementwurf hat sich mit der dritten Generation der verf ̈ ugbaren Werkzeuguntersützung für FPGAs stark gewandelt, wodurch sich Unterschiede zu der vorhandenen Literatur ergeben. Das Entwurfsvorgehen für die aktuelle FPGA- und Werkzeuggeneration soll zunächst vorgestellt werden, um darauf aufbauend eine passende Laufzeitumgebung für maschinelle Lernalgorithmen auf dem FPGA zu entwerfen. Hierbei soll eine möglichst modulare und energiesparende Systemarchitektur entworfen werden, sodass sich die hier vorgestellte Systemarchitektur gut in eingebettete System anwenden lässt und zusätzlich der maschinelle Lernalgorithmus wegen der Modularität des Systems einfach ausgetauscht werden kann. Anschließend soll eine beispielhafte Umsetzung eines Gauß-Prozesses auf dem FPGA die Einbettung in das Gesamtsystem zeigen, wobei hier Wert auf eine möglichst hohe Geschwindigkeit der Hardwareimplementierung gelegt werden soll. Die Umsetzung einer energiesparenden Systemarchitektur für verschiedene maschinelle Lernalgorithmen ist nach Wissen des Autors neu, da in der vorhandenen Literatur jeweils ein neues System für einen anderen Algorithmus entworfen wird. Des Weiteren ist Umsetzung von Gauß-Prozessen auf FPGAs ist nach Wissen des Autors ebenfalls neu, sodass ich hier weitere Unterschiede zur vorhanden Literatur ergeben.
Subject Headings: FPGA
Subject Headings (RSWK): Field programmable gate array
URI: http://hdl.handle.net/2003/37160
http://dx.doi.org/10.17877/DE290R-19156
Issue Date: 2016-01
Appears in Collections:Sonderforschungsbereich (SFB) 876

Files in This Item:
File Description SizeFormat 
buschjaeger_2016b.pdfDNB1.22 MBAdobe PDFView/Open


This item is protected by original copyright



All resources in the repository are protected by copyright.