Authors: Guhr, Fabian
Sprave, Leon
Barthold, Franz-Joseph
Menzel, Andreas
Title: Computational shape optimisation for a gradient-enhanced continuum damage model
Language (ISO): en
Abstract: An isotropic gradient-enhanced damage model is applied to shape optimisation in order to establish a computational optimal design framework in view of optimal damage distributions. The model is derived from a free Helmholtz energy density enriched by the damage gradient contribution. The Karush–Kuhn–Tucker conditions are solved on a global finite element level by means of a Fischer–Burmeister function. This approach eliminates the necessity of introducing a local variable, leaving only the global set of equations to be iteratively solved. The necessary steps for the numerical implementation in the sense of the finite element method are established. The underlying theory as well as the algorithmic treatment of shape optimisation are derived in the context of a variational framework. Based on a particular finite deformation constitutive model, representative numerical examples are discussed with a focus on and application to damage optimised designs.
Subject Headings: Non-local damage
Gradient enhanced model
Large deformation
Shape optimisation
Sensitivity analysis
Issue Date: 2020-01-28
Rights link:
Appears in Collections:Lehrstuhl Statik und Dynamik

Files in This Item:
File Description SizeFormat 
Guhr2020_Article_ComputationalShapeOptimisation.pdf2.89 MBAdobe PDFView/Open

This item is protected by original copyright

This item is licensed under a Creative Commons License Creative Commons