Authors: Taebi, Korosh
Title: Adaptive unstetige Finite Elemente Methoden für elastoplastische Kontaktprobleme
Language (ISO): de
Abstract: Diese Arbeit beschäftigt sich mit der Modellierung und effizienten Simulation des elastoplastischen Kontaktproblems mit Hilfe von unstetigen Galerkin Methoden. Zur Bestimmung einer approximativen Lösung dieses Problems im Rahmen der Finiten Elemente Methode werden für die Diskretisierung die SIPG bzw. IIPG Methode in Betracht gezogen und entsprechende biorthogonale Ansatzfunktionen für die duale Variable verwendet. Die Lösung des sich daraus ergebenden Systems mit Ungleichheitsnebenbedingungen erfolgt mit einem semiglatten Newtonverfahren. Um die Effizienz des Lösungsalgorithmus zu steigern, werden residuale Fehlerschätzer hergeleitet und für eine lokale Verfeinerung des Netzes verwendet. Die dabei zu erwartende Ordnung der Reduktion des Diskretisierungsfehlers nach jedem Verfeinerungsschritt wird anhand von Beispielsimulationen beobachtet und abschließend eine simultane Nutzung von stetigen und unstetigen Ansatzfunktionen sowie eine Methode zur Netzauftrennung vorgestellt.
Subject Headings: Finite Elemente Methoden
Adaptivität
Discontinuous Galerkin Verfahren
Subject Headings (RSWK): Finite-Elemente-Methode
Adaptives Verfahren
Diskontinuierliche Galerkin-Methode
URI: http://hdl.handle.net/2003/40539
http://dx.doi.org/10.17877/DE290R-22409
Issue Date: 2020
Appears in Collections:Lehrstuhl X Wissenschaftliches Rechnen

Files in This Item:
File Description SizeFormat 
KoroshTaebi-Dissertation.pdfDNB1.47 MBAdobe PDFView/Open


This item is protected by original copyright



Items in Eldorado are protected by copyright, with all rights reserved, unless otherwise indicated.