Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaiser, Tobias-
dc.contributor.authorCordill, Megan J.-
dc.contributor.authorKirchlechner, Christoph-
dc.contributor.authorMenzel, Andreas-
dc.date.accessioned2022-06-13T13:39:14Z-
dc.date.available2022-06-13T13:39:14Z-
dc.date.issued2021-10-05-
dc.identifier.urihttp://hdl.handle.net/2003/40953-
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-22803-
dc.description.abstractMotivated by advances in flexible electronic technologies and by the endeavour to develop non-destructive testing methods, this article analyses the capability of computational multiscale formulations to predict the influence of microscale cracks on effective macroscopic electrical and mechanical material properties. To this end, thin metal films under mechanical load are experimentally analysed by using in-situ confocal laser scanning microscopy (CLSM) and in-situ four point probe resistance measurements. Image processing techniques are then used to generate representative volume elements from the laser intensity images. These discrete representations of the crack pattern at the microscale serve as the basis for the calculation of effective macroscopic electrical conductivity and mechanical stiffness tensors by means of computational homogenisation approaches. A comparison of simulation results with experimental electrical resistance measurements and a detailed study of fundamental numerical properties demonstrates the applicability of the proposed approach. In particular, the (numerical) errors that are induced by the representative volume element size and by the finite element discretisation are studied, and the influence of the filter that is used in the generation process of the representative volume element is analysed.en
dc.language.isoende
dc.relation.ispartofseriesInternational journal of fracture;Bd 231. 2021, H. 2, S. 223-242-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectComputational multiscale simulationsen
dc.subjectComputational homogenisationen
dc.subjectScale-bridgingen
dc.subjectElectrical resistanceen
dc.subjectMicrocrackingen
dc.subjectAnisotropic conductivityen
dc.subjectHeterogeneous microstructuresen
dc.subject.ddc620-
dc.subject.ddc670-
dc.titleElectrical and mechanical behaviour of metal thin films with deformation-induced cracks predicted by computational homogenisationen
dc.typeTextde
dc.type.publicationtypearticlede
dc.subject.rswkZerstörungsfreie Werkstoffprüfungde
dc.subject.rswkMetallisches Glasde
dc.subject.rswkDünne Schichtde
dc.subject.rswkMikrorissde
dc.subject.rswkKonfokale Mikroskopiede
dc.subject.rswkComputersimulationde
dc.subject.rswkWiderstand <Elektrotechnik>de
dc.subject.rswkLeitfähigkeitde
dc.subject.rswkMikrostrukturde
dcterms.accessRightsopen access-
eldorado.secondarypublicationtruede
eldorado.secondarypublication.primaryidentifierhttps://doi.org/10.1007/s10704-021-00582-3de
eldorado.secondarypublication.primarycitationInternational journal of fracture. Band 231. 2021, Heft 2, Seiten 223-242de
Appears in Collections:Institut für Mechanik

Files in This Item:
File Description SizeFormat 
Kaiser2021_Article_ElectricalAndMechanicalBehavio.pdf2.77 MBAdobe PDFView/Open


This item is protected by original copyright



This item is licensed under a Creative Commons License Creative Commons