Authors: Platt, Timo
Baumann, Jonas
Biermann, Dirk
Title: Potential of high-feed milling structured dies for material flow control in hot forming
Language (ISO): en
Abstract: Hot forming processes of complex parts with small cavities demand high-performance tools made of hardened steels. Their surface can be tribologically modified in order to control the material flow for improving the mold filling of functional elements. Surface structuring here offers great potential for adjusting the frictional properties and thus controlling the material flow in forming processes. In this study, high-feed milling (HFM) of surface structures in hot work tool steel (HWS) components is investigated. The process performance was determined by cutting force measurements and tool life tests. The achievable surface topography was measured and evaluated in terms of structure quality and roughness parameters, and friction properties were derived based on the results. In a hot ring compression test, the influence of certain structure variants on the material flow was analyzed. The results conclude that HFM is a suitable process for structuring HWS components with constant structure quality and low tool wear. In addition, a variety of structures showed significant influence on the hot ring compression test. This indicates a relevant potential of HFM for the modification of hardened tool surfaces to improve the performance of hot forming processes and increase the manufactural quality and productivity.
Subject Headings: High-feed milling
Cutting forces
Surface structures
AISI H11
Hot forming
Friction
Subject Headings (RSWK): Fräsen
Schnittkraft
Oberflächenstruktur
Werkzeugstahl
Warmumformen
Reibung
URI: http://hdl.handle.net/2003/41356
http://dx.doi.org/10.17877/DE290R-23199
Issue Date: 2022-09-27
Rights link: https://creativecommons.org/licenses/by/4.0/
Appears in Collections:Institut für Spanende Fertigung

Files in This Item:
File Description SizeFormat 
s11740-022-01165-4.pdfDNB2.98 MBAdobe PDFView/Open


This item is protected by original copyright



This item is licensed under a Creative Commons License Creative Commons