Authors: Rudoph, Günter
Title: Evolutionary Search for Minimal Elements in Partially Ordered Finite Sets
Language (ISO): en
Abstract: The task of finding minimal elements of a partially ordered set is a generalization of the task of finding the global minimum of a real valued function or of finding pareto optimal points of a multicriteria optimization problem. It is shown that evolutionary algorithms are able to converge to the set of minimal elements in finite time with probability one, provided that the search space is finite, the time invariant variation operator is associated with a positive transition probability function and that the selection operator obeys the so called elite preservation strategy.
URI: http://hdl.handle.net/2003/5336
http://dx.doi.org/10.17877/DE290R-15256
Issue Date: 1998-11-08
Publisher: Universität Dortmund
Appears in Collections:Sonderforschungsbereich (SFB) 531

Files in This Item:
File Description SizeFormat 
CI1698_doc.ps86.25 kBPostscriptView/Open
ci1698_doc.pdfDNB84.51 kBAdobe PDFView/Open


This item is protected by original copyright



All resources in the repository are protected by copyright.