Authors: Rudolph, Günter
Rudoph, Günter
Title: Local Convergence Rates of Simple Evolutionary Algorithms with Cauchy Mutations
Language (ISO): en
Abstract: The standard choice for mutating an individual of an evolutionary algorithm with continuous variables is the normal distribution; however other distributions, especially some versions of the multivariate Cauchy distribution, have recently gained increased popularity in practical applications. Here the extent to which Cauchy mutation distributions may affect the local convergence behavior of evolutionary algorithms is analyzed. The results show that the order of local convergence is identical for Gaussian and spherical Cauchy distributions, whereas nonspherical Cauchy mutations lead to slower local convergence. As a by-product of the analysis some recommendations for the parametrization of the self-adaptive step size control mechanism can be derived.
URI: http://hdl.handle.net/2003/5337
http://dx.doi.org/10.17877/DE290R-15270
Issue Date: 1998-11-08
Publisher: Universität Dortmund
Appears in Collections:Sonderforschungsbereich (SFB) 531

Files in This Item:
File Description SizeFormat 
CI3798_doc.ps423.88 kBPostscriptView/Open
ci3798_doc.pdfDNB314.69 kBAdobe PDFView/Open


This item is protected by original copyright



All resources in the repository are protected by copyright.