S - estimators in the linear regression model with long - memory error terms

dc.contributor.authorSibbertsen, Philippde
dc.date.accessioned2004-12-06T18:38:13Z
dc.date.available2004-12-06T18:38:13Z
dc.date.issued1998de
dc.description.abstractWe investigate the behaviour of S - estimators in the linear regression model, when the error terms are long - memory Gaussian processes. It turns out that under mild regularity conditions S - estimators are still normally distributed with a similar variance - covariance structure as in the i.i.d. case. This assertion holds for the parameter estimates as well as for the scale estimates. Also the rate of convergence is for S - estimators the same as for the least squares estimator and for the BLUE.en
dc.format.extent170111 bytes
dc.format.extent365961 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/4831
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-5407
dc.language.isoende
dc.publisherUniversitätsbibliothek Dortmundde
dc.subjectlinear regression modelen
dc.subjectlong - range dependenceen
dc.subjectrobustnessen
dc.subject.ddc310de
dc.titleS - estimators in the linear regression model with long - memory error termsen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
98_33.pdf
Size:
166.12 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
tr33-98.ps
Size:
357.38 KB
Format:
Postscript Files