S - estimators in the linear regression model with long - memory error terms
| dc.contributor.author | Sibbertsen, Philipp | de |
| dc.date.accessioned | 2004-12-06T18:38:13Z | |
| dc.date.available | 2004-12-06T18:38:13Z | |
| dc.date.issued | 1998 | de |
| dc.description.abstract | We investigate the behaviour of S - estimators in the linear regression model, when the error terms are long - memory Gaussian processes. It turns out that under mild regularity conditions S - estimators are still normally distributed with a similar variance - covariance structure as in the i.i.d. case. This assertion holds for the parameter estimates as well as for the scale estimates. Also the rate of convergence is for S - estimators the same as for the least squares estimator and for the BLUE. | en |
| dc.format.extent | 170111 bytes | |
| dc.format.extent | 365961 bytes | |
| dc.format.mimetype | application/pdf | |
| dc.format.mimetype | application/postscript | |
| dc.identifier.uri | http://hdl.handle.net/2003/4831 | |
| dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-5407 | |
| dc.language.iso | en | de |
| dc.publisher | Universitätsbibliothek Dortmund | de |
| dc.subject | linear regression model | en |
| dc.subject | long - range dependence | en |
| dc.subject | robustness | en |
| dc.subject.ddc | 310 | de |
| dc.title | S - estimators in the linear regression model with long - memory error terms | en |
| dc.type | Text | de |
| dc.type.publicationtype | report | en |
| dcterms.accessRights | open access | |
| eldorado.dnb.deposit | true |
