Testing strict monotonicity in nonparametric regression

dc.contributor.authorBirke, Melanie
dc.contributor.authorDette, Holger
dc.date.accessioned2007-02-21T14:44:43Z
dc.date.available2007-02-21T14:44:43Z
dc.date.issued2007-02-21T14:44:43Z
dc.description.abstractA new test for strict monotonicity of the regression function is proposed which is based on a composition of an estimate of the inverse of the regression function with a common regression estimate. This composition is equal to the identity if and only if the “true” regression function is strictly monotone, and a test based on an L2-distance is investigated. The asymptotic normality of the corresponding test statistic is established under the null hypothesis of strict monotonicity. AMS Subject Classification: 62G10en
dc.identifier.urihttp://hdl.handle.net/2003/23300
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-27
dc.language.isoende
dc.subjectGoodness-of-fit testen
dc.subjectNonparametric regressionen
dc.subjectStrictly monotone regressionen
dc.subject.ddc004
dc.titleTesting strict monotonicity in nonparametric regressionen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tr49-06.pdf
Size:
142.03 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.93 KB
Format:
Item-specific license agreed upon to submission
Description: