Co-sorption of volatile components in polymer-based pharmaceutical formulations

Loading...
Thumbnail Image

Date

2024-10-05

Journal Title

Journal ISSN

Volume Title

Publisher

Alternative Title(s)

Abstract

Amorphous Solid Dispersions (ASDs) are mixtures of active pharmaceutical ingredients (APIs) and polymers aiming to increase API aqueous solubility and bioavailability. ASDs are often produced using solvent-based manufacturing, such as spray drying. Due to solubility or miscibility limitations in one solvent, solvent mixtures are frequently used for this purpose. Drying solvents or solvent mixtures from polymer-based products like ASDs is an energy-intensive and time-consuming process. Designing and optimising this drying process requires knowledge of the sorption isotherms of the solvent(s) in these polymer-based products. In this work, we developed a novel approach for measuring the simultaneous absorption/desorption of two solvents in a polymer. Combining classical dynamic vapour sorption (DVS) measurements with Raman spectroscopy, this innovative approach provides a more detailed and accurate measurement of the sorption isotherms than common methods. Moreover, we developed an approach for precisely predicting the sorption equilibria in three-component systems just based on sorption data of the corresponding binary subsystems. Our modelling approach combines the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) with the Non-Equilibrium Thermodynamics of Glassy Polymers (NET-GP). Building on the description of the sorption isotherms of either water or ethanol in poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64) and in indomethacin (IND), we were able to quantitatively predict the simultaneous sorption of water and ethanol in PVPVA64 and the one of ethanol in an IND/PVPVA64 ASD.

Description

Table of contents

Keywords

Co-sorption, Sorption isotherm, ASDs, Raman, DVS, PC-SAFT, NET-GP

Subjects based on RSWK

Citation