A Hybrid Approach to Feature Selection and Generation Using an Evolutionary Algorithm

dc.contributor.authorFischer, Simonde
dc.contributor.authorKlinkenberg, Ralfde
dc.contributor.authorMierswa, Ingode
dc.contributor.authorRitthoff, Oliverde
dc.date.accessioned2004-12-07T08:21:19Z
dc.date.available2004-12-07T08:21:19Z
dc.date.created2002de
dc.date.issued2003-06-05de
dc.description.abstractGenetic algorithms proved to work well on feature selection problems where the search space produced by the initial feature set already contains the hypothesis to be learned. In cases where this premise is not fulfilled, one needs to find or generate new features to adequately extend the search space. As a solution to this representation problem we introduce a framework that combines feature selection and generation in a wrapper based approach using a modified genetic algorithm for the feature transformation and an inductive learner for the evaluation of the constructed feature set. The basic idea of this concept is to combine the positive search properties of conventional genetic algorithms with an incremental adaptation of the search space. To evaluate this hybrid feature selection and generation approach we compare it to several feature selection wrappers both on artificial and real world data.en
dc.format.extent224656 bytes
dc.format.extent242747 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/5431
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-5781
dc.language.isoende
dc.publisherUniversität Dortmundde
dc.relation.ispartofseriesReihe Computational Intelligence ; 127de
dc.subject.ddc004de
dc.titleA Hybrid Approach to Feature Selection and Generation Using an Evolutionary Algorithmen
dc.typeTextde
dc.type.publicationtypereport
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
127.pdf
Size:
237.06 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
127.ps
Size:
219.39 KB
Format:
Postscript Files