Smooth backfitting in additive inverse regression

dc.contributor.authorBissantz, Nicolai
dc.contributor.authorDette, Holger
dc.contributor.authorHildebrandt, Thimo
dc.date.accessioned2013-10-11T07:26:30Z
dc.date.available2013-10-11T07:26:30Z
dc.date.issued2013-10-11
dc.description.abstractWe consider the problem of estimating an additive regression function in an inverse regression model with a convolution type operator. A smooth back fitting procedure is developed and asymptotic normality of the resulting estimator is established. Compared to other methods for the estimation in additive models the new approach neither requires observations on a regular grid nor the estimation of the joint density of the predictor. It is also demonstrated by means of a simulation study that the backfitting estimator outperforms the marginal integration method at least by a factor two with respect to the integrated mean squared error criterion.en
dc.identifier.urihttp://hdl.handle.net/2003/31093
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-5618
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823;37/2013
dc.subjectadditive modelsen
dc.subjectcurse of dimensionalityen
dc.subjectinverse regressionen
dc.subjectsmooth back ttingen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleSmooth backfitting in additive inverse regressionen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_3713_SFB823_Bissantz_Dette_Hildebrandt.pdf
Size:
406.76 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.02 KB
Format:
Item-specific license agreed upon to submission
Description: