A note on uniform consistency of monotone function estimators
Loading...
Date
2005-10-11T14:37:57Z
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Recently, Dette, Neumeyer and Pilz (2005a) proposed a new monotone estimator for strictly increasing nonparametric regression functions and proved asymptotic normality. We explain two modifications of their method that can be used to obtain monotone versions of any nonparametric function estimators, for instance estimators of
densities, variance functions or hazard rates. The method is appealing to practitioners because they can use their favorite method of function estimation (kernel smoothing, wavelets, orthogonal series,...) and obtain a monotone estimator that inherits desirable properties of the original estimator. In particular, we show that both monotone estimators share the same rates of uniform convergence (almost sure or in probability) as the original estimator.
Description
Table of contents
Keywords
function estimator, kernel method, monotonicity, uniform convergence