A note on uniform consistency of monotone function estimators

dc.contributor.authorNeumeyer, Natalie
dc.date.accessioned2005-10-11T14:37:57Z
dc.date.available2005-10-11T14:37:57Z
dc.date.issued2005-10-11T14:37:57Z
dc.description.abstractRecently, Dette, Neumeyer and Pilz (2005a) proposed a new monotone estimator for strictly increasing nonparametric regression functions and proved asymptotic normality. We explain two modifications of their method that can be used to obtain monotone versions of any nonparametric function estimators, for instance estimators of densities, variance functions or hazard rates. The method is appealing to practitioners because they can use their favorite method of function estimation (kernel smoothing, wavelets, orthogonal series,...) and obtain a monotone estimator that inherits desirable properties of the original estimator. In particular, we show that both monotone estimators share the same rates of uniform convergence (almost sure or in probability) as the original estimator.en
dc.format.extent154344 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/2003/21639
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-14495
dc.language.isoen
dc.subjectfunction estimatoren
dc.subjectkernel methoden
dc.subjectmonotonicityen
dc.subjectuniform convergenceen
dc.subject.ddc004
dc.titleA note on uniform consistency of monotone function estimatorsen
dc.typeText
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tr35-05.pdf
Size:
150.73 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.91 KB
Format:
Item-specific license agreed upon to submission
Description: