BaPreStoPro: an R package for Bayesian prediction of stochastic processes

dc.contributor.authorHermann, Simone
dc.date.accessioned2016-06-07T11:49:58Z
dc.date.available2016-06-07T11:49:58Z
dc.date.issued2016
dc.description.abstractIn many applications, stochastic processes are used for modeling. Bayesian analysis is a strong tool for inference as well as for prediction. We here present an R package for a large class of models, all based on the definition of a jump diffusion with a non-homogeneous Poisson process. Special cases, as the Poisson process itself, a general diffusion process or a hierarchical (mixed) diffusion model, are considered. The package is a general tool box, because it is based on the stochastic differential equation, approximated with the Euler scheme. Functions for simulation, estimation and prediction are provided for each considered model.en
dc.identifier.urihttp://hdl.handle.net/2003/35066
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-17114
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB823;28, 2016en
dc.subjectBayesian estimationen
dc.subjectstochastic differential equationen
dc.subject(jump) diffusionen
dc.subjecthidden Markov modelen
dc.subjecthierarchical (mixed) modelen
dc.subjectEuler-Maruyama approximationen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleBaPreStoPro: an R package for Bayesian prediction of stochastic processesen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_2816_SFB823_Hermann.pdf
Size:
664.38 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.12 KB
Format:
Item-specific license agreed upon to submission
Description: