PyBact

dc.contributor.authorIsarankura-Na-Ayudhya, Chartchalerm
dc.contributor.authorNantasenamat, Chanin
dc.contributor.authorPrachayasittikul, Virapong
dc.contributor.authorPreeyanon, Likit
dc.date.accessioned2011-12-02T10:00:40Z
dc.date.available2011-12-02T10:00:40Z
dc.date.issued2011-12-02
dc.description.abstractPyBact is a software written in Python for bacterial identification. The code simulates the predefined behavior of bacterial species by generating a simulated data set based on the frequency table of biochemical tests from diagnostic microbiology textbook. The generated data was used for predictive model construction by machine learning approaches and results indicated that the classifiers could accurately predict its respective bacterial class with accuracy in excess of 99 %.en
dc.identifier.urihttp://hdl.handle.net/2003/29209
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-3060
dc.language.isoen
dc.relation.ispartofseriesEXCLI Journal ; Vol. 10, 2011en
dc.subjectbacteriaen
dc.subjectbacterial identificationen
dc.subjectdata miningen
dc.subjectmicrobiologyen
dc.subjectPyBacten
dc.subjectPythonen
dc.subject.ddc610
dc.titlePyBacten
dc.title.alternativean algorithm for bacterial identificationen
dc.typeText
dc.type.publicationtypearticle
dcterms.accessRightsopen access
eldorado.dnb.zdberstkatid2132560-1

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Nantasenamat_24112011_proof.pdf
Size:
117.33 KB
Format:
Adobe Portable Document Format
Description:
DNB
Loading...
Thumbnail Image
Name:
Nantasenamat Supplementary Information.pdf
Size:
434.24 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.85 KB
Format:
Item-specific license agreed upon to submission
Description: