Intelligent group movement and selection in realtime strategy games

dc.contributor.authorBeume, Nicolade
dc.contributor.authorDanielsiek, Holgerde
dc.contributor.authorHein, Tobiasde
dc.contributor.authorNaujoks, Borisde
dc.contributor.authorPiatkowski, Nicode
dc.contributor.authorPreuss, Mikede
dc.contributor.authorStüer, Raphaelde
dc.contributor.authorThom, Andreasde
dc.contributor.authorWessing, Simonde
dc.date.accessioned2009-05-12T16:02:17Z
dc.date.available2009-05-12T16:02:17Z
dc.date.issued2008-12de
dc.description.abstractMovement of groups in realtime strategy games is often a nuisance: Units travel and battle separately, resulting in huge losses and the AI looking dumb. This applies to computer as well as human commanded factions. We suggest to tackle that by using flocking improved by influence-map based pathfinding which leads to a much more natural and intelligent looking behavior. A similar problem occurs if the computer AI has to select groups to combat a specific target: Assignment of units to groups, especially for multiple enemy groups, is often suboptimal when units have very different attack skills. This can be cured by using offline prepared self-organizing feature maps that use all available information for looking up good matches. We demonstrate that these two approaches work well separately, but also that they go together very naturally, thereby leading to an improved and - via parametrization - very flexible group behavior. Opponent AI may be strenghtened that way as well as player-supportive AI. A thorough experimental analysis supports our claims.en
dc.identifier.urihttp://hdl.handle.net/2003/26162
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-695
dc.language.isoende
dc.relation.ispartofseriesReihe CI; 255-08de
dc.subjectevolutionary algorithmsen
dc.subjectneural networksen
dc.subjectpath findingen
dc.subjectrealtime strategy gamesen
dc.subjecttactical decision makingen
dc.subject.ddc004de
dc.titleIntelligent group movement and selection in realtime strategy gamesen
dc.typeTextde
dc.type.publicationtypereportde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
25508.pdf
Size:
410.53 KB
Format:
Adobe Portable Document Format
Description:
DNB