Dynamics and length distributions of microtubules with a multistep catastrophe mechanism

Loading...
Thumbnail Image

Date

2023-01-23

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Regarding the experimental observation that microtubule (MT) catastrophe can be described as a multistep process, we extend the Dogterom–Leibler model for dynamic instability in order to discuss the effect that such a multistep catastrophe mechanism has on the distribution of MT lengths in the two regimes of bounded and unbounded growth. We show that in the former case, the steady state length distribution is non-exponential and has a lighter tail if multiple steps are required to undergo a catastrophe. If rescue events are possible, we detect a maximum in the distribution, i.e. the MT has a most probable length greater than zero. In the regime of unbounded growth, the length distribution converges to a Gaussian distribution whose variance decreases with the number of catastrophe steps. We extend our work by applying the multistep catastrophe model to MTs that grow against an opposing force and to MTs that are confined between two rigid walls. We determine critical forces below which the MT is in the bounded regime, and show that the multistep characteristics of the length distribution are largely lost if the growth of an MT in the unbounded regime is restricted by a rigid wall. All results are verified by stochastic simulations.

Description

Table of contents

Keywords

microtubule, dynamic instability, catastrophe, multistep

Citation