Bayesian D-optimal designs for error-in-variables models

dc.contributor.authorKonstantinou, Maria
dc.contributor.authorDette, Holger
dc.date.accessioned2016-05-18T10:31:47Z
dc.date.available2016-05-18T10:31:47Z
dc.date.issued2016
dc.description.abstractBayesian optimality criteria provide a robust design strategy to parameter misspeci- fication. We develop an approximate design theory for Bayesian D-optimality for non- linear regression models with covariates subject to measurement errors. Both maximum likelihood and least squares estimation are studied and explicit characterisations of the Bayesian D-optimal saturated designs for the Michaelis-Menten, Emax and exponential regression models are provided. Several data examples are considered for the case of no preference for specific parameter values, where Bayesian D-optimal saturated designs are calculated using the uniform prior and compared to several other designs, including the corresponding locally D-optimal designs, which are often used in practice.en
dc.identifier.urihttp://hdl.handle.net/2003/34966
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-17014
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB823;24, 2016en
dc.subjecterror-in-variables modelsen
dc.subjectD-optimalityen
dc.subjectBayesian optimal designsen
dc.subjectclassical errorsen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleBayesian D-optimal designs for error-in-variables modelsen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_2416_SFB823_Konstantinou_Dette.pdf
Size:
310.72 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.12 KB
Format:
Item-specific license agreed upon to submission
Description: