Clustering techniques for the detection of Business Cycles
dc.contributor.author | Theis, W. | de |
dc.contributor.author | Weihs, C. | de |
dc.date.accessioned | 2004-12-06T18:39:49Z | |
dc.date.available | 2004-12-06T18:39:49Z | |
dc.date.issued | 1999 | de |
dc.description.abstract | In this paper business cycles are considered as a multivariate phenomenon and not as a univariate one determined e.g. by the GNP. The subject is to look for the number of phases of a business cycle, which can be motivated by the number of clusters in a given dataset of macro-economic variables. Different approaches to distances in the data are tried in a fuzzy cluster analysis to pursue this goal. | en |
dc.format.extent | 202234 bytes | |
dc.format.extent | 897846 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | application/postscript | |
dc.identifier.uri | http://hdl.handle.net/2003/4927 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-15027 | |
dc.language.iso | en | de |
dc.publisher | Universitätsbibliothek Dortmund | de |
dc.subject | business cycles | en |
dc.subject | cluster analysis | en |
dc.subject | fuzzy clustering | en |
dc.subject.ddc | 310 | de |
dc.title | Clustering techniques for the detection of Business Cycles | en |
dc.type | Text | de |
dc.type.publicationtype | report | en |
dcterms.accessRights | open access |