Clustering techniques for the detection of Business Cycles

dc.contributor.authorTheis, W.de
dc.contributor.authorWeihs, C.de
dc.date.accessioned2004-12-06T18:39:49Z
dc.date.available2004-12-06T18:39:49Z
dc.date.issued1999de
dc.description.abstractIn this paper business cycles are considered as a multivariate phenomenon and not as a univariate one determined e.g. by the GNP. The subject is to look for the number of phases of a business cycle, which can be motivated by the number of clusters in a given dataset of macro-economic variables. Different approaches to distances in the data are tried in a fuzzy cluster analysis to pursue this goal.en
dc.format.extent202234 bytes
dc.format.extent897846 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/4927
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-15027
dc.language.isoende
dc.publisherUniversitätsbibliothek Dortmundde
dc.subjectbusiness cyclesen
dc.subjectcluster analysisen
dc.subjectfuzzy clusteringen
dc.subject.ddc310de
dc.titleClustering techniques for the detection of Business Cyclesen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
99_40.pdf
Size:
197.49 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
tr40-99.ps
Size:
876.8 KB
Format:
Postscript Files