Feature selection on quantum computers
dc.contributor.author | Mücke, Sascha | |
dc.contributor.author | Heese, Raoul | |
dc.contributor.author | Müller, Sabine | |
dc.contributor.author | Wolter, Moritz | |
dc.contributor.author | Piatkowski, Nico | |
dc.date.accessioned | 2025-02-26T10:30:28Z | |
dc.date.available | 2025-02-26T10:30:28Z | |
dc.date.issued | 2023-02-20 | |
dc.description.abstract | In machine learning, fewer features reduce model complexity. Carefully assessing the influence of each input feature on the model quality is therefore a crucial preprocessing step. We propose a novel feature selection algorithm based on a quadratic unconstrained binary optimization (QUBO) problem, which allows to select a specified number of features based on their importance and redundancy. In contrast to iterative or greedy methods, our direct approach yields higher-quality solutions. QUBO problems are particularly interesting because they can be solved on quantum hardware. To evaluate our proposed algorithm, we conduct a series of numerical experiments using a classical computer, a quantum gate computer, and a quantum annealer. Our evaluation compares our method to a range of standard methods on various benchmark data sets. We observe competitive performance. | en |
dc.identifier.uri | http://hdl.handle.net/2003/43505 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-25338 | |
dc.language.iso | en | |
dc.relation.ispartofseries | Quantum machine intelligence; 5(1) | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Feature selection | en |
dc.subject | VQE | en |
dc.subject | Quantum annealer | en |
dc.subject | QUBO | en |
dc.subject.ddc | 004 | |
dc.subject.rswk | Merkmal | de |
dc.subject.rswk | Quadratische binäre Optimierung ohne Nebenbedingungen | de |
dc.title | Feature selection on quantum computers | en |
dc.type | Text | |
dc.type.publicationtype | ResearchArticle | |
dcterms.accessRights | open access | |
eldorado.secondarypublication | true | |
eldorado.secondarypublication.primarycitation | Mücke, S. et al. (2023) ‘Feature selection on quantum computers’, Quantum machine intelligence, 5(1). Available at: https://doi.org/10.1007/s42484-023-00099-z | |
eldorado.secondarypublication.primaryidentifier | https://doi.org/10.1007/s42484-023-00099-z |