Rekonstruktionsbasierte Selektion relevanter Einflussgrößen
Loading...
Files
Date
2003-12-23
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universität Dortmund
Abstract
In diesem Beitrag wird ein Verfahren vorgestellt,das im Rahmen einer Datenvoranalyse für eine nachgeschaltete datenbasierte Modellierung aus einer gegebenen Menge von potenziellen Einflussgrößen einen Satz relevanter und nichtredundanter Einflussgrößen selektiert.Hierdurch wird der Suchraum und somit auch die Komplexität für ein nachgeschaltetes Modellierungsverfahren erheblich reduziert. Im Gegensatz zu den meisten etablierten Selektionsverfahren bewertet das Verfahren nicht nur die Relevanz einzelner Einflussgrößen, sondern auch die von gesamten Sätzen von Einflussgrößen.Die Leistungsfähigkeit des Verfahrens wird an einem Demonstrationsbeispiel verdeutlicht. Des Weiteren wird exemplarisch die Auswirkung dieser Datenvoranalyse auf eine nachgeschaltete Fuzzy-Modellierung von bekannten Benchmarkbeispielen diskutiert.