Basic Machine Learning Approaches for the Acceleration of PDE Simulations and Realization in the FEAT3 Software

dc.contributor.authorRuelmann, Hannes
dc.contributor.authorGeveler, Markus
dc.contributor.authorRibbrock, Dirk
dc.contributor.authorZajac, Peter
dc.contributor.authorTurek, Stefan
dc.date.accessioned2019-12-20T11:55:49Z
dc.date.available2019-12-20T11:55:49Z
dc.date.issued2019-12
dc.description.abstractIn this paper we present a holistic software approach based on the FEAT3 software for solving multidimensional PDEs with the Finite Element Method that is built for a maximum of performance, scalability, maintainability and extensibilty. We introduce basic paradigms how modern computational hardware architectures such as GPUs are exploited in a numerically scalable fashion. We show, how the framework is extended to make even the most recent advances on the hardware market accessible to the framework, exemplified by the ubiquitous trend to customize chips for Machine Learning. We can demonstrate that for a numerically challenging model problem, artificial neural networks can be used while preserving a classical simulation solution pipeline through the incorporation of a neural network preconditioner in the linear solveren
dc.identifier.issn2190-1767
dc.identifier.urihttp://hdl.handle.net/2003/38462
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-20381
dc.language.isoen
dc.relation.ispartofseriesErgebnisberichte des Instituts für Angewandte Mathematik;618de
dc.subject.ddc610
dc.titleBasic Machine Learning Approaches for the Acceleration of PDE Simulations and Realization in the FEAT3 Softwareen
dc.typeText
dc.type.publicationtypepreprint
dcterms.accessRightsopen access
eldorado.secondarypublicationfalse

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ergebnisbericht Nr. 618.pdf
Size:
137.28 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: