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Summary

Excitons are fundamental electronic excitations in a semiconductor. They are bound states
consisting of an electron in the conduction band and a positively charged hole in the valence
band. They have hydrogen-like properties and are therefore referred to as the hydrogen
analogues in solid states. In the semiconductor Cuprous Oxide, Cu2O, highly excited states
of excitons can be observed with principal quantum numbers up to 𝑛 = 25. These states
are called Rydberg excitons in analogy to their atomic counterparts, the Rydberg atoms.
The intention of this thesis is to gain new insights into fundamental properties of these

Rydberg excitons by optical spectroscopy. The focus lies on one-photon absorption spec-
troscopy with high spectral resolution up to 5 nanoelectronvolts. The physics addressed in
this thesis can be divided into three main topics.
First, the interaction of Rydberg excitons with high principal quantum numbers 𝑛 with

both external electric and magnetic fields is studied. In the regime of high 𝑛, the density of
states becomes so large that it becomes unfeasible to use a microscopic theory that explicitly
considers every single state. Instead, general 𝑛-dependent scaling laws for various funda-
mental properties of Rydberg excitons are derived theoretically and proven experimentally.
These scaling laws provide an efficient description of Rydberg excitons in the high-𝑛 regime
and give fundamental insights into similarities and differences between Rydberg excitons
and Rydberg atoms.
Second, the behavior of Rydberg excitons surrounded by an electron-hole plasma is inves-

tigated. For this purpose, absorption spectra are presented, recorded at different densities
of free carriers injected into the crystal by an off-resonant pump laser. Carrier densities as
low as 0.01 𝜇m−3 are found to lead to a lowering of the band gap and the disappearance
of the highest exciton lines. A model based on screening of the Coulomb interaction by
free charge carriers is presented that allows for a phenomenological description of the data.
In this context, the experimental parameter space spanned by excitation power and tem-
perature is investigated to determine the limiting factors for the observation of Rydberg
excitons with principal quantum numbers higher than 𝑛max = 25, the highest Rydberg ex-
citon state observed so far. Indeed, at nanowatt laser powers and millikelvin temperatures,
the extension of the observable exciton series to 𝑛max = 28 is possible.
The third part of this thesis addresses mutual interactions between Rydberg excitons.

Combining data from pump-probe experiments with a detailed theoretical model for the
shape of these spectra for several exciton interaction mechanisms clearly shows that long-
range van der Waals-type interactions are the dominant contribution to interactions between
Rydberg excitons.
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Zusammenfassung

Exzitonen sind fundamentale elektronische Anregungen in einem Halbleiter. Es handelt sich
hierbei um gebundene Zustände aus einem Elektron im Leitungsband und einem positiv ge-
ladenen Loch im Valenzband. Aufgrund ihrer wasserstoffähnlichen Eigenschaften werden sie
auch als Wasserstoff-Analogon in Festkörpern bezeichnet. In dem Halbleiter Kupferoxydul,
Cu2O, können hoch angeregte Exzitonzustände mit Hauptquantenzahlen bis zu 𝑛 = 25
beobachtet werden. Diese Zustände werden aufgrund ihrer hohen Hauptquantenzahl, in
Anlehnung an Rydberg-Atome, als Rydberg-Exzitonen bezeichnet.

Die vorliegende Arbeit befasst sich mit der Untersuchung grundlegender Eigenschaften
der Rydberg-Exzitonen mittels optischer Spektroskopie. Der Schwerpunkt liegt dabei auf
Ein-Photonen-Absorptionsspektroskopie mit einer hohen spektralen Auflösung von bis zu
5 Nanoelektronenvolt. Generell können die Ergebnisse dieser Arbeit in drei Themengebiete
unterteilt werden.

Im ersten Teil wird die Wechselwirkung von Rydberg-Exzitonen hoher Hauptquantenzah-
len 𝑛 sowohl mit externen elektrischen als auch magnetischen Feldern untersucht. Aufgrund
der hohen Dichte an Zuständen im Bereich hoher Hauptquantenzahlen wird die Beschrei-
bung des Systems mit einer mikroskopischen Theorie sehr aufwändig. Aus diesem Grund
werden hier Skalierungsgesetze zahlreicher exzitonischer Eigenschaften in Abhängigkeit von
𝑛 entwickelt, die experimentell bestätigt werden können. Diese Gesetzmäßigkeiten erlau-
ben eine einfache Beschreibung von Rydberg-Exzitonen mit hoher Hauptquantenzahl 𝑛
und ermöglichen tiefere Einblicke in Gemeinsamkeiten und Unterschiede zwischen Rydberg-
Exzitonen und Rydberg-Atomen.

Der zweite Teil der Arbeit beschäftigt sich mit der Untersuchung von Rydberg-Exzitonen
in der Umgebung eines Elektron-Loch-Plasmas. Zu diesem Zweck werden Absorptionsspek-
tren diskutiert, welche das Verhalten der Rydberg-Exzitonen bei zunehmender Elektron-
Loch-Dichte zeigen. Es zeigt sich, dass bereits Dichten von 0.01 𝜇m−3 zu einer Absenkung
der Bandkante führen, was zu einem Verschwinden der höchsten Exziton-Linien im Spek-
trum führt. Es wird ein theoretisches Modell, beruhend auf der Abschirmung der Coulomb-
Wechselwirkung durch freie Ladungsträger, eingeführt, das es erlaubt, die experimentellen
Daten phänomenologisch zu beschreiben. Schließlich wird in diesem Zusammenhang der
experimentelle Parameterraum aus Anregungsleistung und Temperatur untersucht, um die
limitierenden Faktoren zu finden, welche die höchste beobachtbare Hauptquantenzahl be-
stimmen. Bei Anregungsleistungen im Bereich von Nanowatt und Temperaturen im Bereich
von Millikelvin kann die maximal beobachtbare Hauptquantenzahl auf 𝑛max = 28 erweitert
werden.

Der dritte Teil der Arbeit zielt auf die Untersuchung von gegenseitigen Wechselwirkun-
gen zwischen Rydbergexzitonen ab. Mit der Kombination von Daten aus Pump-Probe-
Messungen und einem theoretischen Modell, das die Berechnung der Linienform dieser
Spektren für verschiedene Wechselwirkungs-Mechanismen ermöglicht, kann gezeigt werden,
dass zwischen Rydberg-Exzitonen langreichweitige van der Waals-Wechselwirkungen domi-
nieren.
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Chapter 1

Introduction

Atomic spectroscopy played an important role in the development of quantum mechanics at
the beginning of the twentieth century [Gal94; Bet+57]. Beginning with the description of
spectral lines in the visible spectrum of hydrogen by Balmer in 1885 and the more general
classification by Rydberg in 1890, the first model to describe the main characteristics of
the hydrogen atom was proposed by Bohr in 1913 [Whi34; Ryd90]. Bohr assumed electrons
to move around the atomic core in classical orbits, but restricted their angular momentum
to change in an integral multiple 𝑛 of the reduced Planck’s constant ℏ only. The integral
multiple 𝑛 is called the principal quantum number. This leads to discrete radii of the
electron orbits and correspondingly also to discrete electron binding energies that depend
on the principal quantum number 𝑛. While the radii of the orbits increase according
to 𝑛2, the binding energies of electrons moving in such orbits decrease as 𝑛−2. Hence,
transitions between these orbits lead to a series of discrete spectral lines, in accordance
with the observations in atomic spectra, as reported by Balmer and Rydberg for example.
Despite its simplicity, the Bohr model is suitable to describe basic physical properties

of atoms with an electron excited to a state of high principal quantum number 𝑛. These
atoms are called Rydberg atoms. Due to their huge radii, Rydberg atoms have large dipole
moments and are extremely sensitive to external fields but also to the presence of other
Rydberg atoms in their surrounding [Gal+08]. Along with the development of experimen-
tal techniques that allow for the cooling and trapping of individual atoms, Rydberg atoms
gained enhanced attention in the last two decades due to their mutual interactions. Since
they exhibit dipole-dipole interactions that are up to about 10 orders of magnitude larger
than those of ground state atoms and that act over large distances of several 𝜇m [Urb+09;
Rav+14], they became promising candidates to realize quantum logical gates in the field of
quantum simulation [Jak+00; Luk+01; Saf+05]. Further, Rydberg atoms gained interest
in the fields of nonlinear quantum optics, where they were employed to realize all-optical
switching on a single-photon level [Mur+16], and they also present a unique platform to
study many-body physics [Bro+20]. In this regard, the investigation of Rydberg atoms
nowadays covers a wide range of interesting research fields [Bro+16]. However, while the
preparation of tailored atomic systems is possible on a laboratory scale and enables re-
searchers to demonstrate fundamental principles that are relevant to the realization of
quantum technology concepts, Rydberg states in solid state systems offer a more applica-
tion friendly environment.
Such Rydberg excitations can be found in semiconductor systems. In a semiconductor, the

fundamental electronic excitations consist of a negatively charged electron in the conduction
band and a positively charged hole in the valence band. The electron and the hole form
Coulomb-bound states, called excitons, that exhibit an hydrogen-like energy scheme. After
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Chapter 1 Introduction

the proposal of the exciton concept by Frenkel [Fre31] and Wannier [Wan37] in the 1930s,
they were first observed experimentally by Hayashi and Katsuki [Hay+50; Hay+52] and by
Gross and Karryev [Gro+52; Gro56] in the 1950s in the semiconductor Cu2O. The spectra
shown in Ref. [Gro56] already reveal a Rydberg series of states with principal quantum
numbers up to 𝑛 = 8. The material Cu2O is well suited to study highly excited exciton
states, as it offers a remarkably high Rydberg energy of about 90 meV compared to other
semiconductors, in combination with the availability of high quality natural crystals. In this
context, the series of observable excitons in Cu2O was extended to 𝑛 = 12 in 1996 [Mat+96]
and to 𝑛 = 25 in 2014 [Kaz+14], which is by far the highest Rydberg state found in a solid-
state environment. Excitons with high principal quantum numbers as large as 𝑛 = 25 are
termed Rydberg excitons and have giant extensions up to about 1 𝜇m, covering a volume
of one billion unit cells. Akin to their atomic analogues, they are expected to exhibit
strong interactions both with external fields and among each other and are therefore ideal
candidates to study Rydberg physics in a crystal.

In contrast to atoms, the cubic crystal structure and peculiarities of the valence band dis-
persion allow for the direct observation of high angular momentum states [The+15] and lead
to a fine structure splitting of states with different angular momenta [Uih+81; Sch+16a;
Sch+17c; Mun+18]. Furthermore, the dielectric environment of the crystal leads to a Ry-
dberg energy, that is reduced by two orders of magnitude compared to the hydrogen case,
which allows one to directly access the whole Rydberg series spectroscopically. Thus, the
properties of Rydberg excitons can be studied in a systematic way in dependence on the
principal quantum number 𝑛. A detailed introduction into the basic concepts of excitons
and to the influence of the crystal environment on the excitonic properties is given in Chap-
ter 2. The experimental setup used to study the excitonic Rydberg series is described in
Chapter 3.

The high-field regime of the excitonic system, where the interaction energy with external
fields exceeds the Coulomb interaction of the bound state, can be reached within comparably
low experimental effort due to the reduced Rydberg energy compared to atoms. In this
regard, the observation of Rydberg excitons triggered the investigation of quantum chaos in
the range of high magnetic fields directly after their discovery [The15; Aßm+16; Fre+17].
Besides the observation of quantum chaos in the high-field regime, experiments in moderate
external fields offer the possibility to uncover fundamental properties of Rydberg excitons in
both electric and magnetic fields. In this context, high resolution studies of excitons in the
low-𝑛 regime in external fields have been performed and described theoretically [Sch+17b;
Rom+18; Hec+17a]. However, while these theoretical models succeeded to describe the
excitonic states in external fields with quantum numbers 𝑛 ≤ 6 almost quantitatively, the
density of states in the high-𝑛 regime, i.e. 𝑛 > 6, becomes too large to calculate solutions
of the Hamiltonian in practice.

Therefore, Chapter 4 of this thesis presents an approach for the investigation of Rydberg
excitons in the high-𝑛 regime subject to electric and magnetic fields. The focus lies on
the determination of scaling laws for characteristic quantities of excitons that depend on
the principal quantum number 𝑛, as these scaling laws allow one to extrapolate physical
concepts valid at low 𝑛 to the high-𝑛 regime. Properties, such as the polarizability and
the rate of ionization in electric fields, but also the crossing of states and the formation of
Landau levels in magnetic fields, are addressed. Scaling laws in dependence on 𝑛 are well
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known for many properties of Rydberg atoms as well [Gal94]. Hence, the scaling laws found
for Rydberg excitons are used to explore similarities and differences between excitonic and
atomic Rydberg systems.

The strength of interaction of Rydberg states with external fields but also among each
other depends directly on the dipole moments of the particular states. Since the dipole mo-
ments increase with the principal quantum number as 𝑛2, similar to the radii, states with
higher 𝑛 than 𝑛 = 25 are expected to interact even stronger than the highest excitons ob-
served so far. This assumption directly gives rise to the question of what mechanisms limit
the highest observable principal quantum number 𝑛max [Höf+14]. Chapter 5 addresses this
question within a comprehensive investigation of the influence of an electron-hole plasma
on Rydberg excitons. An increasing density of free carriers in a semiconductor is known
to result in the Mott effect, which describes a transition of bound exciton states to free
electron-hole pairs, due to a band gap renormalization which shifts the continuum edge to
lower energies [Mot61; Mot68]. So far, the Mott effect has been studied for excitonic ground
states at plasma densities of the order of 106 𝜇m−3[Man+10]. The system of Rydberg ex-
citons with binding energies below 1 meV allows for the first time for the investigation of
the Mott effect of highly excited states in a semiconductor environment and the general
behavior of excitons surrounded by a plasma at ultralow densities on the order of 1 𝜇m−3

and below. Therefore, in that chapter the impact of such a low-density plasma on the
absorption spectra of Rydberg excitons is presented. Further, a model based on the Debye
theory is introduced, that allows for an estimation of the relevant plasma densities and a
phenomenological description of the data.

Finally, Chapter 6 of this thesis addresses mutual interactions among Rydberg excitons.
Indications for strong dipole-dipole interactions, as found in atomic systems, have already
been reported for Rydberg excitons along with their discovery in Ref. [Kaz+14]. The huge
interaction strength between two Rydberg excitons leads to a spectral shift of the pair state
resonance energy. If the shift is larger than the linewidth of the excitation light source, it be-
comes impossible to excite the Rydberg exciton pair state. As the dipole-dipole interaction
depends on the distance between the two corresponding excitons, the existence of a Rydberg
exciton can prevent the excitation of a second one within a certain volume. This is called
the Rydberg blockade. The concept of the excitonic Rydberg blockade motivated various
proposals that suggested to use Rydberg excitons to strongly enhance optical nonlineari-
ties [Zie+16; Wal+18a] or as single-photon emitters based on Rydberg blockade [Kha+17].
However, while indications of the Rydberg blockade were found in Ref. [Kaz+14], it was
not possible to reveal the exact type of the underlying interaction potential. Therefore,
in Chapter 6, a different experimental approach than in Ref. [Kaz+14] is presented, that
allows for the determination of the type of interaction potential and to rule out other possi-
ble candidates for the underlying interaction mechanism. Not only the distinction between
two different potentials that describe exciton-exciton interactions but also the differenti-
ation between an exciton-exciton and exciton-plasma interaction becomes possible within
the discussed approach.

3



Chapter 2

Absorption spectroscopy in Cu2O

In this chapter, all basic concepts that are necessary to understand linear absorption spec-
troscopy in Cu2O are summarized. First, light-matter interaction is discussed with a focus
on the electric-dipole approximation in one-photon absorption. In Sec. 2.2, detailed in-
formation about the material system Cu2O is given with a focus on its optical properties
at low temperatures. In Sec. 2.3, the concept of excitons is introduced and deviations of
the excitonic energy spectrum from the hydrogen-like model are discussed with a compar-
ison to atomic physics. Next, selection rules for optical transitions are given in Sec. 2.4 to
provide an explanation of the appearance of absorption features. Finally, in Sec. 2.5, the
main spectroscopic features observable in one-photon absorption are demonstrated with an
exemplary high-resolution absorption spectrum of the whole yellow exciton series.

2.1 Interaction of light with matter

In this section, the interaction of light with matter is briefly summarized based on the
descriptions in [Kli07]. We consider an electronic system with a ground state |𝛹𝑖⟩ and an
excited, or final, state |𝛹𝑓⟩ as for example a two-level atom, or the electronic bands of a
semiconductor. We are interested in the transition rate of an electron from the ground
state to the excited state under the influence of an electromagnetic field. The light field is
treated perturbatively as it results only in small changes of the eigenenergies and eigenstates.
Therefore, the transition rate is given by Fermi’s Golden rule

𝑤𝑖𝑓 = 2𝜋
ℏ

|𝐻𝑖𝑓|2𝐷(𝐸) , (2.1)

with the transition matrix element 𝐻𝑖𝑓 = ⟨𝛹𝑓 ∣ 𝐻 ∣ 𝛹𝑖⟩ and the density of final states 𝐷(𝐸)
as a function of energy 𝐸. 𝐻 is the Hamiltonian of the system. For a single electron of
mass 𝑚e and momentum pe in an electrostatic potential 𝑉 (r), it is given by

𝐻𝑒,0 =
p2

e
2𝑚e

+ 𝑉 (r) . (2.2)

The interaction of the electron with the light field is obtained by minimal substitution
pe → pe+𝑒A with the elementary charge 𝑒 and the vector potential A of the electromagnetic
wave. The Hamiltonian then reads

𝐻𝑒 = 1
2𝑚e

(pe + 𝑒A)2 + 𝑉 (r) . (2.3)

4



2.2 Crystal structure of Cu2O

With pe = ℏ
𝑖 ∇ (ℏ being the reduced Planck constant) and the Coulomb gauge ∇ ⋅ A = 0

one obtains

𝐻𝑒 = 1
2𝑚e

(−ℏ2∇2 + ℏ
𝑖

𝑒A∇ + 𝑒2A2) + 𝑉 (r)

= 𝐻e,0 + 𝑒
𝑚e

A ⋅ pe + 𝑒2

2𝑚e
A2 . (2.4)

The vector potential is given by

A = 𝐴0 ̂e ⋅ 𝑒𝑖(kr−𝜔𝑡) , (2.5)

with an amplitude 𝐴0 and a unit vector defining the direction of polarization ̂e. Further, k
is the wave vector with 𝑘 = |k| = 2𝜋

𝜆 and 𝜔 is the frequency of the electromagnetic wave.
To treat the light field perturbatively, we assume the amplitude of A to be small. Thus,

the last term in Eq. (2.4) can be neglected and we focus on the linear regime. This is given
by the second term 𝐻1 = 𝑒

𝑚e
A ⋅ pe, that is the first-order perturbation term relevant for

the transition in Eq. (2.1):

𝑤𝑖𝑓 = 2𝜋
ℏ

∣⟨𝛹𝑓 ∣ 𝐻1 ∣ 𝛹𝑖⟩∣2 𝐷(𝐸) = 2𝜋
ℏ

∣⟨𝛹𝑓 ∣ 𝑒
𝑚e

A ⋅ pe ∣ 𝛹𝑖⟩∣
2

𝐷(𝐸) . (2.6)

In the visible spectral range, the wavelengths 𝜆 ≈ 500 nm are much larger than the
relevant spatial dimensions, that are of the order of the lattice constant 𝑟 ≈ 𝑎l ≈ 5 Å, and
one finds for the product 𝑘 ⋅ 𝑟 = 2𝜋

5000 Å ⋅ 5 Å = 2𝜋 ⋅ 10−3. Therefore, we can expand A in
orders of kr and stop after the second term

𝑒𝑖kr = 1 + 𝑖kr
1!

+ (𝑖kr)2

2!
+ ... ≈ 1 + 𝑖kr

1!
. (2.7)

Thus, we find for the transition matrix element of (2.6)

𝐻𝑖𝑓 = ⟨𝛹𝑓 ∣ 𝐻1 ∣ 𝛹𝑖⟩ ≈ 𝑒𝐴0
𝑚0

⟨𝛹𝑓 ∣ ( ̂e ⋅ p) ∣ 𝛹𝑖⟩ + 𝑖𝑒𝐴0
𝑚0

⟨𝛹𝑓 ∣ ( ̂e ⋅ p)(k ⋅ r) ∣ 𝛹𝑖⟩ . (2.8)

This yields the different orders of possible optical transitions in one-photon absorption.
The first term describes electric-dipole transitions while the second term includes magnetic-
dipole and electric-quadrupole transitions. Typically, only the first term is considered. This
is called the dipole approximation [Ell61]. Within the point group 𝑂h, the electric-dipole
operator transforms according to 𝛤 −

4 , the electric-quadrupole operator transforms according
to 𝛤 +

3 ⊕𝛤 +
5 and the magnetic-dipole operator according to 𝛤 +

4 . These relations will be used
in Sec. 2.4 to develop selection rules for optical transitions.

2.2 Crystal structure of Cu2O
Cuprous Oxide (chemical sum formula Cu2O) is one of the oxides of copper. It is found
in nature as the mineral cuprite appearing in a reddish color. An example of a 𝜇m-thin
slab is shown in Fig. 2.1 (a). It crystallizes in a centrosymmetric cubic structure and can
be described according to symmetry operations of the point group 𝑂ℎ [Mad+98]. One

5



Chapter 2 Absorption spectroscopy in Cu2O

possible unit cell consists of 4 copper atoms and 2 oxygen atoms as shown schematically
in Fig. 2.1 (b). The copper atoms form a face-centered cubic (fcc) lattice, whereas the
oxygen atoms form a body-centered cubic (bcc) lattice, shifted along the diagonal relative
to the copper lattice by a quarter of the diagonal’s length [Dah+66]. The lattice constant
is 𝑎l = 4.26 Å[Mad+98]. The optical properties considered here result from the electronic

(a) (b)

Figure 2.1 (a) Photo of a reddish shimmering crystal slab of Cu2O with a thickness of
30 𝜇m. (b) The unit cell of Cu2O. Red spheres represent copper atoms in an fcc lattice,
blue spheres represent oxygen atoms in a bcc lattice.

properties of the valence and conduction bands at the 𝛤 point. Several band structure
calculations of Cu2O have been made starting with the work of [Dah+66] followed by
[Kle+80] and [Rob83] and many others. The relevant dispersion of the band structure used
here was finally calculated using density functional theory in [Fre+09]. For further band
structure calculations, see references therein. The main properties of the electronic band
structure will be summarized here, according to the works mentioned before.

In the following and throughout this work, we will use the notation of [Kos+66] to denote
the symmetry representations of electronic bands, excitonic states and operators. Due to
the centrosymmetry of Cu2O, parity is a good quantum number that will be denoted by
the upper indices + and - for positive and negative parity under inversion.

A schematic presentation of the relevant electronic bands is shown in Fig. 2.2 (a). The
upper two valence bands stem from the fivefold degenerate copper 3d orbitals. They are
split by the crystal field into the upper 𝛤 +

5 and lower 𝛤 +
3 bands. The lowest conduction

band stems from copper as well, but from the copper 4s orbitals that are represented by 𝛤 +
1

in the crystal field. The next higher conduction band stems from copper 4p orbitals that
are transformed into 𝛤 −

3 symmetry [Rob83].
Including spin-orbit coupling (see Sec. 2.3.1), the states split further, now described by the

double groups. The splitting is obtained by multiplying the symmetries mentioned above
with 𝛤 +

6 , which is the spin representation in 𝑂h symmetry. As a result, the uppermost
valence band splits into the high-lying 𝛤 +

7 band and the lower-lying 𝛤 +
8 band [Kle+80].

6



2.3 The concept of excitons

The Bloch amplitudes of the 𝛤 +
7 band read according to [Kos+66]1, (𝛤5⊗𝛤6), cf. [Hec+17a]:

|𝛤 +
7 , +1/2⟩ = |↑𝐻⟩ = − 1√

3
[(𝑈𝑥 + 𝑖𝑈𝑦) |↓ℎ⟩ − 𝑈𝑧 |↑ℎ⟩] , (2.9)

|𝛤 +
7 , −1/2⟩ = |↓𝐻⟩ = − 1√

3
[(𝑈𝑥 − 𝑖𝑈𝑦) |↑ℎ⟩ + 𝑈𝑧 |↓ℎ⟩] . (2.10)

Here, 𝑈𝑖, 𝑖 = 𝑥, 𝑦, 𝑧 are the orbital Bloch amplitudes of the valence band which transform
as 𝛤5,𝑦𝑧, 𝛤5,𝑥𝑧, 𝛤5,𝑥𝑦 and ↑ℎ and ↓ℎ denote the hole spins ±1/2.
Analogue expressions can be found for the 𝛤 +

8 band, but are not of importance in this
work. The 𝛤 +

8 band is shifted to lower energies by the split-off energy of 𝛥so = 131 meV
[Sch+16a]. Note that this value varies slightly in literature between 127.3 meV in [Fre+09]
and 133.8 meV in [Uih+81]. It was shown in [Fre+09], that the spin-orbit coupling leads
to an important deviation of the pure parabolic dispersion of the uppermost valence band
as indicated in Fig. 2.2 (b). Next, the 𝛤 +

1 conduction band is described via 𝛤 +
6 within the

double group, whereas the higher 𝛤 −
3 band is transformed into 𝛤 −

8 .
These energy bands result in optical band-to-band transitions, as shown in Fig. 2.2 (b).

Transitions from the uppermost valence band to the lowest conduction band belong to the
yellow series with a band gap of 2.17208 eV [Kaz+14]. Transitions from the second highest
valence band to the lowest conduction band build the green series with a band gap of
𝐸𝑔

g = 2.3023 eV [Ito+75]. Excitations from the highest valence band to the second lowest
conduction band are called the blue series, with a gap energy of 𝐸𝑏

g = 2.6336 eV [Tak+18]
and those from the second highest valence band to the second lowest conduction band are
called violet transitions, with 𝐸𝑣

g = 2.756 eV [Dau+66].

2.3 The concept of excitons
When light of suitable energy is absorbed by an electron in a valence band of a semiconduc-
tor, the electron is excited to a state of higher energy in a conduction band. Simultaneously,
a hole is created in the valence band. The description here is restrained to the effective-mass
approximation, i.e. the restriction to transitions in the vicinity of the 𝛤 point or to small
values of the light’s wave vector k, respectively. Within this approximation, one assumes
parabolic band dispersions meaning that electron and hole are treated as free particles with
k-independent effective masses 𝑚e and 𝑚h. Electron and hole interact via Coulomb inter-
action and form hydrogen-like bound states with quantized energy levels below the band
gap 𝐸g. These quantized states are called excitons. Their motion can be separated in a
center-of-mass motion and a relative motion of electron and hole. In this approximation,
the Hamiltonian is given by

𝐻0 = 𝐸g + ℏ2

2𝑀
∇2

R + 𝑝2

2𝜇
+ 𝑉 (r) . (2.11)

The second term is the kinetic energy of the center of mass R = (𝑚ere +𝑚hrh)/(𝑚e +𝑚h)
with the total mass 𝑀 = 𝑚e + 𝑚h. Here, re and rh denote the coordinates and 𝑚e and 𝑚h
denote the masses of the single particles. The third term describes the relative motion of

1Note that they are shifted in phase by (-i)
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Figure 2.2 (a) Splitting of atomic orbitals into valence and conduction bands. (b) Scheme
of dispersion relations of the four most important bands at the 𝛤 point and correspond-
ing band-to-band transitions. The uppermost valence band shows a deviation of a pure
parabolicity, according to Refs. [Fre+09; Sch+16a].

electron and hole with the reduced mass 𝜇−1 = 𝑚−1
e + 𝑚−1

h and momentum p. The fourth
term is the Coulomb potential given by

𝑉 (𝑟) = − 𝑒2

4𝜋𝜖0𝜖𝑠𝑟
, (2.12)

with the vacuum permittivity 𝜖0 and the static dielectric constant 𝜖𝑠 reducing the Coulomb
potential in material, compared to vacuum. For Cu2O, one finds 𝜖𝑠 = 7.5 [Hod+76]. The
distance between electron and hole is given by 𝑟 = |r| = |re − rh|. The Hamiltonian in
Eq. (2.11) will be extended in Sec. 2.3.1.

The energy dispersion of an exciton in this approximation is given by

𝐸𝑋 = 𝐸g + 𝐸b
𝑛 + 𝐸kin . (2.13)

The second term is the excitonic binding energy

𝐸b
𝑛 = −𝑅𝑦

𝑛2 , (2.14)

with the excitonic Rydberg energy 𝑅𝑦 and the principal quantum number 𝑛. 𝑅𝑦 is given
by the atomic Rydberg energy 𝑅𝑦H = 13.6 eV, modified by 𝜇 and 𝜖𝑠:

𝑅𝑦 = 𝜇
𝑚0

1
𝜖2

𝑠

𝑚0𝑒4

2(4𝜋𝜖0ℏ)2 = 𝜇
𝑚0

1
𝜖2

𝑠
𝑅𝑦H . (2.15)
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2.3 The concept of excitons

Here, 𝑚0 is the free electron mass. The quadratic dependence on 𝑛 results in a hydrogen-like
energy ladder in the spectra.
The last term in Eq. (2.13) describes the center-of-mass kinetic energy with the exciton

wave vector K = ke + kh

𝐸kin = ℏ2K2

2𝑀
. (2.16)

For the yellow series, the masses are given by 𝑚e = 0.985 𝑚0, 𝑚h = 0.575 𝑚0 and 𝑀 =
1.56 𝑚0 [Nak+12]. Note that these are actually polaron masses.
With increasing principal quantum number 𝑛 not only the binding energy decreases but

also the average distance between electron and hole increases. It is given by

⟨𝑟𝑛,𝑙⟩ = 𝑎B

2
[3𝑛2 − 𝑙(𝑙 + 1)] , (2.17)

with the excitonic Bohr radius given by

𝑎B = 𝑚0
𝜇

𝜖𝑠𝑎B
H (2.18)

and the angular momentum quantum number 𝑙. The excitonic Bohr radius is increased by
𝜇 and 𝜖𝑠 compared to the hydrogen value 𝑎B

H = 0.53 Å [Gru06].
For Cu2O, the Rydberg energy of the yellow series is about 90 meV [Kaz+14]. The

excitonic Bohr radius can be expressed in terms of the Rydberg energy

𝑎B = 1
2

𝑒2

4𝜋𝜖0𝜖𝑠𝑅𝑦
, (2.19)

which yields 𝑎B = 1.11 nm. The values of 𝑅𝑦 and 𝑎B given above hold for states with 𝑛 ≥ 2,
but deviate for 𝑛 = 1 as discussed in the next section. For highly excited Rydberg excitons,
one finds an average distance between electron and hole up to 𝑟25𝑃 ≈ 1 𝜇m for 𝑛 = 25.
The wave function of an exciton is given by the center-of-mass movement and the product

of the electron’s wave function in the conduction band with the hole’s wave function in the
valence band times their envelope function

𝛹𝑛𝑙𝑚(K, r) = 𝛺−1/2 𝑒𝑖KR 𝛷e(re) 𝛷h(rh) 𝛷env
𝑛𝑙𝑚(r) . (2.20)

The center-of-mass movement is described with a plane wave 𝑒𝑖KR and a normalization
factor 𝛺−1/2. The envelope function 𝛷env

𝑛𝑙𝑚(r) describes the relative motion of electron and
hole. In spherical approximation without any crystal symmetries, it contains spherical
harmonics in analogy to the solutions of the hydrogen problem. Hence, the relative motion
of electron and hole is classified by angular momentum quantum numbers 𝑙 and 𝑚, with
𝑙 = 0, 1, 2, ...𝑛 − 1, and can be described by 𝑆-, 𝑃-, 𝐷-...like states. Strictly speaking,
the angular momentum is no longer a good quantum number in a crystal and the relative
motion has to be described by irreducible symmetry representations, given by the symmetry
of the material. Nevertheless, the excitonic states are usually labeled by their corresponding
spherical counterpart.
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2.3.1 Deviations from the hydrogen model
The excitonic energies of the yellow series in Cu2O show deviations from the pure hydrogen-
like energy ladder, in particular for low 𝑛. The degeneracy of states with the same 𝑛 but
different angular momenta is lifted by several effects which spread the levels over a certain
energy range for a particular 𝑛. The corresponding effects are described by correction terms
added to the hydrogen-like Hamiltonian 𝐻0 (Eq. (2.11)) and shall be briefly described in
this section.

We follow the notation of Refs. [Uih+81] and [The+15] in cgs- and reduced units, respec-
tively. Further detailed descriptions are given in Refs. [Sch+16c; Sch+17c].
The Hamilton reads

𝐻 = 𝐻0 + 𝐻so + 𝐻d + 𝐻exch . (2.21)

The first new term, 𝐻so, describes the spin-orbit coupling between the hole spin sh (𝑠h =
1/2) and the quasi spin I (𝐼=1) of the threefold valence band to an effective hole spin
j = I + sh with quantum numbers 𝑗 = |𝐼 ± 𝑠h|. It is given by

𝐻so = 2
3

̄𝛥 (1 + I ⋅ sh) (2.22)

and leads to the splitting of the 𝛤 +
5 band into 𝛤 +

7 (𝑗 = 1/2) and 𝛤 +
8 (𝑗 = 3/2) valence

bands. ̄𝛥 = 𝛥so/𝑅𝑦∗ is the splitting amplitude in units of the excitonic Rydberg 𝑅𝑦∗ =
𝑒4𝑚0/(2ℏ2𝜖2

𝑠𝛾′
1) with 𝛾′

1 = 𝛾1 +𝑚0/𝑚𝑒 and the first Luttinger paramter 𝛾1. The term gives
rise to the yellow and green series and leads to the non-parabolic dispersion discussed above
of the uppermost valence band (Fig. 2.2)

The 𝐻d term consists of a spherical (first line) and a cubic term (second line) and was
introduced in [Bal+73; Bal+74]

𝐻d = − 1
3ℏ2 𝜇 (𝑃 (2) ⋅ 𝐼 (2)) +

1
3ℏ2 𝛿cubic ( ∑

𝑘=±4
[𝑃 (2) × 𝐼 (2)](4)

𝑘 + 1
5

√
70[𝑃 (2) × 𝐼 (2)](4)

0 ) , (2.23)

with 𝜇 = (6𝛾3 +4𝛾2)/(5𝛾′
1), 𝛿 = (𝛾3 −𝛾2)/𝛾′

1 and the second and third Luttinger parameters
𝛾2 and 𝛾3. Further, 𝑃 (2) and 𝐼 (2) denote the second rank irreducible tensors of p and I.

The 𝐻d term mixes states of the yellow and green series. In spherical approximation
(𝛿cubic = 0), it further couples the valence band spin j with the relative motion of the
exciton, described by the angular momentum operator l (𝑙 = 0, 1, ..., 𝑛 − 1). This coupling
introduces a fine structure splitting for states with 𝑙 > 0, that can be described in terms
of a total angular momentum f = j + l with quantum numbers 𝑓 = |𝑗 − 𝑙|, ..., |𝑗 + 𝑙|. Now,
the particular states can be denoted by the usual terminology for atomic states of the form
𝑣𝐿𝑓, with a capital 𝐿 for the angular momentum quantum number and the multiplicity
𝑣 = 2𝑗 + 1 that denotes the yellow (𝑗 = 1/2, 𝑣 = 2) and green (𝑗 = 3/2, 𝑣 = 4) series. Since
we are interested mainly in the yellow series here, we will neglect the index 𝑣. So far, the
relevant states read 𝑆1/2, 𝑃1/2, 𝑃3/2, 𝐷3/2, 𝐷5/2, 𝐹5/2, 𝐹7/2, ...

The tensor products in 𝐻d lead to terms in the fourth order of p that describe deviations
from the parabolic dispersion of the valence band. This can be understood with a descriptive
example given in [Kav+97]: In tight-binding approximation, the valence band dispersion
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relation is given by 𝐸(𝑘) ∝ cos(|k|𝑎). The expansion of the cosine function around |k| = 0
leads to the typical quadratic dependence of the dispersion on k or p, respectively. The next
non-vanishing term is of the order 𝑝4. The energy deviations due to the non-parabolicity of
the valence band can be summarized by incorporating a quantum defect parameter 𝛿𝑛,𝑙 in
the binding energy 𝐸b

𝑛,𝑙 [Sch+16a; Sch+16b], in analogy to atomic physics [Gal94], giving
the corrected energy dispersion:

𝐸𝑋 = 𝐸g − 𝑅𝑦
(𝑛 − 𝛿𝑛,𝑙)2 + ℏ2K2

2𝑀
. (2.24)

In atomic physics, the quantum defect 𝛿𝑛,𝑙 appears in the description of non-hydrogenic
atoms. An electron in a low-𝑙 state feels a deviation from the pure 1/𝑟 core potential, since
the field is partially shielded by the remaining core electrons. For states with higher 𝑙, the
probability to find the electron in the vicinity of the core decreases and these states are less
affected by these deviations. This leads to an increase of the binding energy for states with
low 𝑙 in atoms.
Coming back to the excitonic case, the cubic symmetry of the crystal is considered by

values 𝛿cubic ≠ 0 and leads to an additional fine structure splitting of states, in particular
into two lines for 𝐷5/2 and into three lines for 𝐹 excitons (see Sec. 2.5). In this case, 𝑓
is not a good quantum number anymore and the eigenstates have to be described by the
irreducible representations 𝛤 ±

𝑖 of the 𝑂ℎ group (see Sec. 2.4).
Finally, the term 𝐻exch accounts for the electron-hole exchange interaction. It is relevant

for 𝑆-like states (𝑙 = 0) or states that are mixed with these, i.e. 𝐷 states in particular. The
exchange interaction is given by

𝐻exch = ̄𝐽0 (1
4

− se ⋅ sh) 𝛿(r) , (2.25)

with its magnitude ̄𝐽0 = 𝐽0𝛺
𝑅∗𝑎∗ , whereby 𝐽0 is the exchange integral. 𝛺 is the volume of

the unit cell and 𝑎∗ = ℏ2𝜖0𝛾′
1

𝑒2𝑚0
. Further, se is the electron spin. The last term, 𝛿(r), gives

contributions for states with non-vanishing probability density at r = 0 only, i.e. states with
an 𝑆 contribution. For these states, the electron spin has to be considered within a new total
angular momentum ftot = f + se and quantum numbers 𝑓tot = |𝑓 ± 𝑠e|. In particular, this
term leads to the splitting of the ground state (𝑛 = 1) into a Para- (𝑓tot = 0) and an Ortho-
exciton (𝑓tot = 1), see Sec. 2.4. These states are denoted by 𝐿𝑓tot

𝑓 , following the notation in
Ref. [Uih+81], which reads 𝑆(0)

1/2 for the 𝑆 Para-exciton and 𝑆(1)
1/2 for the 𝑆 Ortho-exciton.

The Ortho-exciton is shifted to higher energies by 12.117 meV [Hög+05] above the Para-
exciton, caused by the analytic part of the exchange interaction 𝐻exch [Kuw+77; Uih+81;
Sch+16e]. But also states with 𝑛 ≠ 1 are affected by the exchange interaction, as for
example the 3𝐷 states. Similar to the 𝑆(1)

1/2 Ortho-exciton, the 𝐷(1)
3/2 Ortho-exciton is shifted

to higher energies as well. It is shifted even beyond the energy of 𝐹 states and determines
the highest energy of a multiplet (see Fig. 4.1 in Sec. 4.1).
Finally, 𝑆 states with 𝑛 = 1 are even more affected by correction terms due to their small

size which is comparable to the lattice constant and the polaron radii [Kli07]. The resonance
energy of the 1𝑆 Ortho-exciton is 2.03279 eV (see Fig. 2.3), resulting in a deviating Rydberg
energy of 𝑅𝑦1𝑆 = 2.17208 eV − 2.03279 = 139.3 meV. The Bohr radius is then found to be
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smaller than the value mentioned previously with 𝑎B
1𝑆 ≈ 7 Å ≈ 1.6⋅𝑎l. This deviation results

from a modified dielectric constant that varies between 𝜖𝑠 and the background dielectric
constant 𝜖𝑏. The small extensions of the 1𝑆 exciton wave functions in real space result
further in a widely spread wave function in k-space. A description with parabolic energy
dispersions (effective mass approximation) does not hold anymore and higher terms in
𝑘 modify the exciton mass. Away from the zone center the bands typically flatten and
the mass becomes heavier [Kav+97]. Hence, the 1𝑆 exciton mass is found to be 𝑀1𝑆 =
2.61 𝑚0 [Bra+07]. These deviations are typically accounted for within so called central-cell
corrections. A detailed theoretical treatment is given in [Sch+17c].

All these corrections affect states with different total quantum number 𝑓tot differently
which leads to various deviations from the pure hydrogen series. The resulting multiplet
widths are investigated theoretically and experimentally with help of external electric fields
in Ch. 4. All energies of the experimentally accessible states are shown in Fig. 2.5.

2.4 Optical selection rules

Using the symmetries of the electronic energy bands and of the transition operators in
Eq. (2.8) allows one to set up selection rules for optical transitions between certain energy
bands. Obviously, a transition is forbidden, if the matrix element in Eq. (2.8) is zero. If it
is non-zero, the transition is in principal allowed. Note that it can still show only a small
oscillator strength. According to group theory, it is non-zero if the symmetry of the final
state |𝛹𝑓⟩ is contained in the direct product of the symmetries of the initial state |𝛹𝑖⟩ and
the perturbation operator 𝐻1: 𝛤𝑓 ∈ 𝛤𝐻1

⊗ 𝛤𝑖 [Kli07]. In particular, this rule can be used
for the analysis of excitonic excitations as well. For optical transitions, the initial state
is given by the ground state of the crystal, that has 𝛤 +

1 symmetry according to the 𝑂ℎ
symmetry group, and the final state is the exciton. According to Eq. (2.20) the symmetry
of an exciton is given by the direct product of the involved bands times the symmetry of
electron’s and holes’s relative motion

𝛤𝑋 = 𝛤c ⊗ 𝛤v ⊗ 𝛤env . (2.26)

The indices 𝑐 and 𝑣 denote the conduction and valence band, respectively. Hence, we have
to consider the symmetry of matrix elements ⟨𝛤𝑋|𝛤𝐻1

|𝛤 +
1 ⟩. For dipole transitions, the final

state must contain a 𝛤 −
4 representation. For quadrupole transitions, we need either 𝛤 +

3 or
𝛤 +

5 representations in the symmetry of the final state.
For 𝑆-type excitons the envelope is represented by 𝛤env = 𝛤 +

1 and does not change the
symmetry. Thus, their total symmetry is directly given by the involved bands. We now
consider 𝑆 excitons of the yellow series, i.e. transitions involving the uppermost 𝛤 +

6 band
and the lowest 𝛤 +

7 band. Their symmetry is then given by

𝛤𝑆 = (𝛤 +
6 ⊗ 𝛤 +

7 ) ⊗ 𝛤 +
1 = 𝛤 +

2 ⊕ 𝛤 +
5 . (2.27)

Since the 𝛤 +
1 contribution does not change the wave function, the states can be easily

expressed by their valence band and conduction band constituents, considering the multi-
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plication |𝛤 +
7 , ±1/2⟩ ⊗ |𝛤 +

6 , ±1/2⟩, where |𝛤 +
7 , ±1/2⟩ is given by Eqs. (2.9) and (2.10) :

𝛤 +
2 = 1√

2
(|↑𝑒↓𝐻⟩ − |↓𝑒↑𝐻⟩) , (2.28)

𝛤 +
5,𝑦𝑧 = 𝑖√

2
(|↑𝑒↑𝐻⟩ − |↓𝑒↓𝐻⟩) , (2.29)

𝛤 +
5,𝑥𝑧 = 1√

2
(|↑𝑒↑𝐻⟩ + |↓𝑒↓𝐻⟩) , (2.30)

𝛤 +
5,𝑥𝑦 = −𝑖√

2
(|↑𝑒↓𝐻⟩ + |↓𝑒↑𝐻⟩) . (2.31)

The 𝛤 +
2 state describes the non-degenerate 1𝑆 Para-exciton and is the energetically-lowest

state in the yellow series. It contains only triplet states (total spin s=1) in terms of the pure
spins |↑ℎ↑𝑒⟩, |↓ℎ↓𝑒⟩ and |↑ℎ↓𝑒⟩ + |↓ℎ↑𝑒⟩. This can be seen by inserting the relations given
by Eqs. (2.9) and (2.10) into Eqs. (2.28), (2.29), (2.30) and (2.31). It is spin-forbidden for
optical transitions, since we start from the ground state of the crystal with s=0 and the
electric field of the light cannot change the spin. The 𝛤 +

5 terms describe the threefold 1𝑆
Ortho-exciton. It contains also spin singlet states (total spin s=0), that can couple to light
[Kuw+77].
Since these states do not contain a 𝛤 −

4 symmetry, they cannot be excited with the electric-
dipole moment of the light wave. Thus, Cu2O is a semiconductor with a so called forbidden
direct band gap, caused by the parity of the highest valence and the lowest conduction
band being the same [Age77]. However, one-photon excitations of 𝑆 excitons are allowed
in terms of a quadrupole transition. The quadrupole operator (𝛤 +

3 ⊕ 𝛤 +
5 ) can excite the

Ortho-exciton due to its 𝛤 +
5 symmetry.

For the 𝑆 states (allowed transitions), the intensities of absorption lines, i.e. the oscillator
strengths, are proportional to the squared modulus of the exciton wave function at the origin
r = 0 [Ell57; Age77]

𝑓𝑆(𝑛) ∝ |𝛹𝑆(r)|2r=0 = 1
𝜋(𝑎B)3𝑛3 ∝ 𝑛−3 . (2.32)

Hence, the oscillator strength drops with the third power of principal quantum number.
Now, excitons with a 𝑃-type relative motion are considered. Their symmetry representa-

tion is given by

𝛤𝑃 = (𝛤 +
6 ⊗ 𝛤 +

7 ) ⊗ 𝛤 −
4 = (𝛤 +

2 ⊕ 𝛤 +
5 ) ⊗ 𝛤 −

4 = 𝛤 −
2 ⊕ 𝛤 −

3 ⊕ 𝛤 −
4 ⊕ 2𝛤 −

5 . (2.33)

Due to their 𝑃-type envelope they contain a 𝛤 −
4 contribution and the dipole transition matrix

element becomes non-zero. Their oscillator strengths depend on the squared derivative of
the wave function at the origin

𝑓𝑃(𝑛) ∝ ∣∇𝛹𝑃(r)∣
r=0

∣
2

= 1
𝜋(𝑎B)5

𝑛2 − 1
𝑛5 (2.34)

and scale as 𝑛−3 for 𝑛 ≫ 1. These transitions belong to the group of so called direct
forbidden transitions, but are allowed due to their 𝑃-type envelope function.
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Chapter 2 Absorption spectroscopy in Cu2O

Beside the most prominent 𝑆- and 𝑃-like excitons, also 𝐷-, 𝐹-, 𝐺- and 𝐻-like excitons can
be observed. For completeness their symmetry representation shall be given here (without
𝛤 +

2 contributions):

𝛤𝐷 = 𝛤 +
5 ⊗ (𝛤 +

3 ⊕ 𝛤 +
5 )

= 𝛤 +
1 ⊕ 𝛤 +

3 ⊕ 2𝛤 +
4 ⊕ 2𝛤 +

5 , (2.35)
𝛤𝐹 = 𝛤 +

5 ⊗ (𝛤 −
2 ⊕ 𝛤 −

4 ⊕ 𝛤 −
5 )

= 𝛤 −
1 ⊕ 𝛤 −

2 ⊕ 2𝛤 −
3 ⊕ 3𝛤 −

4 ⊕ 2𝛤 −
5 , (2.36)

𝛤𝐺 = 𝛤 +
5 ⊗ (𝛤 +

1 ⊕ 𝛤 +
3 ⊕ 𝛤 +

4 ⊕ 𝛤 +
5 )

= 𝛤 +
1 ⊕ 𝛤 +

2 ⊕ 2𝛤 +
3 ⊕ 3𝛤 +

4 ⊕ 4𝛤 +
5 , (2.37)

𝛤𝐻 = 𝛤 +
5 ⊗ (𝛤 −

3 ⊕ 2𝛤 −
4 ⊕ 𝛤 −

5 )
= 𝛤 −

1 ⊕ 2𝛤 −
2 ⊕ 3𝛤 −

3 ⊕ 4𝛤 −
4 ⊕ 4𝛤 −

5 . (2.38)

The observation of high angular momentum 𝐹 and 𝐻 excitons was first reported in [The+15].
They are visible in pure absorption spectra since they are mixed with allowed 𝑃 states
by the 𝐻d term and contain 𝛤 −

4 representations (see Fig. 2.3 in Sec. 2.5 or Fig. A.1 in
Appendix A.1). Even-parity 𝐷- and 𝐺-like states couple to the electric-quadrupole field.
Since 𝐷 states start at 𝑛 = 3 and 𝐺 states not before 𝑛 = 5, their oscillator strength
is small according to Eq. (2.32) and they are invisible in one-photon absorption without
external perturbations. However, they can be optically activated either by stress or an
external electric field that mixes even and odd-parity states. Among many early works (see
for example Refs. [Dei+73] or [Age+74]), investigations in an external electric field were
done in [Hec15] and continued as a part of this thesis with a high-resolution setup. Results
are published in Refs. [Hec+17a; Hec+18c] and [Hec+18d]. They will be described in more
detail in Chapter 4.

Furthermore, 𝑆 and 𝐷 states can be excited by two-photon absorption processes (𝛤 +
3 ⊕

𝛤 +
5 ∈ 𝛤 −

4 ⊗ 𝛤 −
4 ) as in [Uih+81] or in a second harmonic generation (SHG) scheme respec-

tively, which was done by Mund et al. [Mun+18]. Additionally, huge theoretical effort has
been spent on the investigation of the excitonic level scheme. Especially the even exciton
series was studied in Refs. [Uih+81] and [Sch+17c].

All experimentally found excitonic transitions of the yellow series are summarized in
Tab. A.1 in Appendix A.1. Their energies are visualized in a level scheme in Fig. 2.5 at the
end of this chapter.

The symmetry considerations can be applied to the green series as well, i.e. transi-
tions from the second highest valence band (𝛤 +

8 ) to the lowest conduction band (𝛤 +
6 ).

Again, due to the same parity of the bands, 𝑆-like transitions are only quadrupole allowed
(𝛤1𝑆𝑔 = (𝛤 +

6 ⊗ 𝛤 +
8 ) ⊗ 𝛤 +

1 = 𝛤 +
3 ⊕ 𝛤 +

4 ⊕ 𝛤 +
5 ). Indeed, in absorption the weak green 1𝑆

quadrupole transition can be seen on the high energy side of the 2𝑃 state (see inset 𝐼𝐼 in
upper panel of Fig. 2.3). However, a much stronger signal can obtained via SHG technique
(cf. [Mun+18]). For the blue and violet series at higher energies, 𝑆 excitons are dipole
allowed as the corresponding conduction band possesses negative parity (𝛤 −

8 ), resulting in
huge optical features (see e.g. [Dau+66]). Throughout this work, the focus will be on the
yellow exciton series and in particular on the 𝑃 states.

Beside discrete absorption peaks, continuous absorption features arise from phonon as-
sisted absorption bands. The excitation of a quadrupole-allowed 𝑆 state can be cou-
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2.5 Absorption spectrum of the whole yellow series

pled to the simultaneous creation of an optical phonon. There are in total 18 phonon
branches in Cu2O. The coupling of the 1𝑆 Ortho-exciton with 𝛤 +

5 symmetry to all odd-
parity phonons with 𝛤 −

2 , 𝛤 −
3 , 𝛤 −

4 or 𝛤 −
5 symmetry can result in a dipole-allowed transition

(𝛤 −
4 ∈ 𝛤 −

2 ⊗ 𝛤 +
5 , 𝛤 −

3 ⊗ 𝛤 +
5 , 𝛤 −

4 ⊗ 𝛤 +
5 , 𝛤 −

5 ⊗ 𝛤 +
5 ). As discussed in Ref. [Sch+17a], the most

relevant couplings include the 𝛤 −
3 - and 𝛤 −

4 -phonons, as these show the strongest transi-
tions. The resulting absorption starts at about one phonon energy 𝐸Ph above the involved
𝑆 resonance with a square-root dependence on the excitation energy

𝛼Ph
𝑛𝑆 = 𝑐Ph

𝑛𝑆(𝐸 − (𝐸𝑛𝑆 + 𝐸Ph))1/2 . (2.39)

The square-root dependence stems from the density of final states 𝐷(𝐸) in three dimensions
(cf. Eq. (2.1)). The amplitude of this process is 𝑐Ph

𝑛𝑆 that is obtained by comparison to
experimental data.
All these transitions can be observed in one-photon absorption and are shown in Fig. 2.3

and discussed in the next section.

2.5 Absorption spectrum of the whole yellow series
In this section, an overview about the absorption spectrum of the yellow series is given.
The whole absorption spectrum of the yellow exciton series is measured with the high-
resolution setup described in Ch. 3 and is shown in Fig. 2.3. The sample used is 𝐻7 cooled
down to a temperature of 1.35 K and the probe power is 1 𝜇W.
The absorption spectrum begins with the sharp quadrupole transition of the 1𝑆 Ortho-

exciton at 2.03279 eV. A closeup is shown in inset 𝐼 in the upper panel of Fig. 2.3. In this
particular case, the resonance is split into two resonances with linewidths of ≈ 4 𝜇eV and
2 𝜇eV. This splitting was investigated in Refs. [Das+03; Das+04; Das+05] and was assigned
to K-dependent terms of the analytic exchange interaction. Later, in Refs. [Sch+16c;
Sch+16e], the K-dependent analytic exchange terms were shown to be in the range of
neV and negligible. The splitting was rather related to the deviations from parabolicity
in the valence band structure (scheme in Fig. 2.2 (b)) seen by an exciton with finite total
momentum ℏK. A splitting can in principal be induced by strain as well, but is excluded
here as a cause of the splitting due to the use of a strain-free sample holder (see Ch. 3) and
the overall high quality of the sample.
The second inset 𝐼𝐼 in the upper panel reveals weak quadrupole signals for the 2𝑆 exciton

of the yellow series and the 1𝑆 exciton of the green series. The energies of these features
agree with the values found in the SHG-spectra (𝐸2𝑆𝑦

= 2.13750 eV and 𝐸1𝑆𝑔
= 2.15439 eV)

[Mun+18].
At an energy of 𝐸𝛤3

Ph = 13.5 meV above the yellow 1𝑆 absorption, the phonon background
starts with the 𝛤 −

3 -phonon branch. It shows a square-root dependence ∝ (𝐸 − (𝐸1𝑆 +
𝐸𝛤 −

3
Ph ))1/2, according to Eq. (2.39). Within the spectrum, contributions due to four different

phonon branches can be identified, all adding up to the continuous phonon background,
shown as the red curve in Fig. 2.3. The onsets of the relevant branches are indicated by
dashed vertical lines. The second and third phonon branches start at 𝐸 = 𝐸1𝑆𝑦

+ 𝐸𝛤 −
4

Ph

(𝐸𝛤 −
4

= 82.1 meV [Sch+17a]) and 𝐸 = 𝐸2𝑆𝑦
+ 𝐸𝛤 −

3
Ph . Similar to the 1𝑆 Ortho-exciton of the

yellow series, the green 1𝑆 exciton couples to 𝛤 −
3 phonons as well, resulting in the strong

fourth phonon branch starting at 𝐸 = 𝐸1𝑆𝑔
+ 𝐸𝛤 −

3
Ph (middle panel of Fig. 2.3).
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Figure 2.3 High-resolution absorption spectrum of the yellow exciton series measured
with a probe power of 1 𝜇W at 𝑇 = 1.35 K on sample 𝐻7. The red line indicates the
background absorption according to Eq. (2.42). Dashed vertical lines mark the beginning
of a phonon branch. Green dots mark zero points 𝛼𝑃

0,𝑛 for every exciton line, obtained
by the fitting routine described in the text. Dark yellow lines in the lower panel show
fitted curves for 𝑛 = 13, 14 and 15. ̃𝐸𝑔 indicates the end of the exciton series and the
transition into the continuum at about 172 𝜇eV below 𝐸g. 𝐸g is the nominal band gap at
2.172087 eV obtained by a fit to the energies according to Eq. (2.24). Insets show zooms
into regions of 𝑆, 𝐹 and 𝐻 angular momentum states.
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2.5 Absorption spectrum of the whole yellow series

This branch is superimposed by an exponential increase of absorption that is observed
from about 𝑛 = 10 until an energy ̃𝐸g = 2.171915 eV, where the exciton series ends and the
spectrum smoothly transforms into a continuum. This part is phenomenologically described
with an Urbach tail-like function

𝛼U = 𝑐U𝑒(𝐸−𝐸̃g)/𝐸U , (2.40)

with an amplitude 𝑐U and the Urbach energy 𝐸U, determining its width (see e.g. [Gru06]).
Here, a width of 𝐸U = 170 𝜇eV leads to a good agreement with the data.
The microscopic origin of this tail is investigated in a recent study by Krüger et al.

[Krü+20]. There, the exponential tail is described quantitatively, based on earlier proposals
by Dow and Redfield [Dow+72]. Within this model, charge carriers, trapped by impurities,
give rise to an inhomogeneous electric micro-field distribution in the crystal. The micro-field
leads to an ionization of the highest Rydberg states which transform into an exponentially
increasing absorption continuum. In other words, the continuum edge is smeared out and
extends exponentially to lower energies. Moreover, the presence of micro-fields results in
deviations of line shape parameters of excitons with the highest 𝑛, which is discussed below.
An experimental investigation of this exponential part is given in Sec. 6.7.
In the true continuum, i.e. 𝐸 > ̃𝐸g, the absorption is described by [Sch+17a]

𝛼cont = 𝑐cont ⋅ 1
𝐸

(𝐸 − ̃𝐸g)
3/2

⋅ ̄𝛾𝑒𝛾̄

sinh ̄𝛾
(1 + ̄𝛾2

𝜋2 ) . (2.41)

Following [Ell57], the continuum absorption increases with an (𝐸 − ̃𝐸g)3/2 dependence for
forbidden transitions. The third factor in Eq. (2.41) is the Sommerfeld enhancement factor

with ̄𝛾 = √ 𝜋2𝑅𝑦
𝐸−𝐸̃g

. It accounts for the increased oscillator strength at the absorption edge

given by the Coulomb interaction between (free) electron-hole pairs. The magnitude of this
process is given by 𝑐cont. Finally, the total background is given by

𝛼back = 𝛼𝛤 −
3

1𝑆𝑦 + 𝛼𝛤 −
4

1𝑆𝑦 + 𝛼𝛤 −
3

2𝑆𝑦 + 𝛼𝛤 −
3

1𝑆𝑔 + 𝛼Ur + 𝛼cont . (2.42)

The chosen amplitudes for the background to fit this particular spectrum are given in
Tab. A.2 in Appendix A.2 .
In [Sch+17a], the composition of the background as outlined above is extended by terms

including a deformation potential. Note that these terms are neglected here. Additionally,
the amplitude of the green 1𝑆 phonon branch is chosen to be 𝑐𝛤 −

3
1𝑆𝑔 = 2.6 ⋅ 𝑐𝛤 −

3
2𝑆𝑦, which is

higher than predicted in [Sch+17a]. Further, the value for 𝐸2𝑆𝑦
entering Eq. (2.42) is set

to the theoretical value 𝐸2𝑆 = 2.1401 eV given in [Sch+17c].
On this continuous background, the 𝑃 exciton absorption lines arise, starting with the

significant 2𝑃 line (upper panel in Fig. 2.3). The series of 𝑃 states continues up to 𝑛 =
22 in this particular case with a hydrogen-like energy ladder following (almost) an 𝑛−2

dependence. The line shapes of the 𝑃 resonances are described by asymmetric Lorentzian
curves of the form

𝛼𝑛𝑃(𝐸) = 𝑂𝑛
𝜋

𝛤𝑛
2 + 2𝑞𝑛 (𝐸 − 𝐸𝑛)

(𝛤𝑛
2 )

2
+ (𝐸 − 𝐸𝑛)2

, (2.43)
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Chapter 2 Absorption spectroscopy in Cu2O

with the resonance energy 𝐸𝑛, the FWHM 𝛤𝑛 and the asymmetry parameter 𝑞𝑛. The
prefactor, 𝑂𝑛, is the area of the peak in eV/mm and proportional to the electron-photon
interaction strength. Following [Nik+61], the oscillator strengths are given by the peak
areas obtained in the experiment

𝑓𝑛,exp ∝ ∫ 𝛼𝑛𝑃(𝐸)𝑑𝐸 = 𝑂𝑛 . (2.44)

The line shape given by Eq. (2.43) was derived by Toyozawa in Refs. [Toy58; Toy64], where
the asymmetry was mainly attributed to interband scattering between different exciton
bands by optical phonons. However, it was shown in [Sch+16d], that the experimentally
observed asymmetries are larger than predicted by this theory and have to be rather at-
tributed to interference effects between the continuous background states and discrete exci-
ton states, as it is known from general theory by Fano [Fan61]. The line shape in Eq. (2.43)
is used to fit the spectrum with the fitting routine described in Appendix A.3. Three fitted
resonance curves for 𝑛 = 13, 14 and 15 are exemplarily shown by the dark yellow lines in
the lower panel of Fig. 2.3. First of all, the fits reveal an offset 𝛼𝑃

0,𝑛 for each resonance, that
is indicated by green dots. Following these dots, the actual background in the lower panel
of Fig. 2.3 is found to be slightly lower than one would expect from the pure spectrum. All
other obtained fit parameters are visualized in Fig. 2.4.

The 𝑃 exciton binding energies 𝐸g − 𝐸𝑛 are shown in the upper left panel. A fit to the
resonance energies with the quantum defect formula Eq. (2.24) yields 𝐸g = 2.172087 eV,
𝑅𝑦 = 90 meV and a quantum defect of 𝛿𝑛,𝑃 = 0.08 in this particular case. Note that
𝛿𝑛,𝑙 is assumed to be constant here, but typically depends on 𝑛. At a photon energy of
𝐸g = 2.172087 eV one obtains a wave vector of 𝑘0 = 𝐸g𝑛̄/(ℏ𝑐) = 3.3 ⋅ 107 m−1, with the
index of refraction 𝑛̄ ≈ 3 (calculated with a first-order Sellmeier formula and a wavelength
of 𝜆 = 570 nm [Ito+98]). Vice versa, the excitons near the band gap are excited at K = k0
which gives a center-of-mass kinetic energy of 𝐸kin = ℏ2K2/(2𝑀) ≈ 27 𝜇eV. Hence, the
actual value for the band gap has to be corrected to 𝐸g = 2.172060 eV. If not stated
otherwise, the values 𝐸g = 2.171208 eV and 𝑅𝑦 = 86 meV are used for calculations in the
next chapters.

This particular spectrum shown in Fig. 2.3 ends at 𝑛max = 22 or at ̃𝐸g = 2.171915 eV,
resp., i.e. 𝛥0 = −172 𝜇eV below 𝐸g. This is the shifted band gap

̃𝐸g = 𝐸g + 𝛥0 , (2.45)

that is attributed to the charged impurities in the sample mentioned above, that lead to
a band gap renormalization. The exciton energies are not affected by this shift, as it is
compensated in first order by Coulomb screening. The constant exciton energies can be
described by introducing an effective Bohr radius 𝑎B

eff > 𝑎B and effective quantum numbers
𝑛eff > 𝑛 (see Sec. 5.2.4). The value for 𝛥0 depends strongly on the exact constitution of
the sample under consideration.

Information about the oscillator strengths is obtained from the peak areas 𝑂𝑛, shown
in Fig. 2.4 (b) as a function of principal quantum number 𝑛. They are normalized to the
measured peak area of 𝑛 = 5, 𝑂5=0.0101 mm−1eV, yielding a theoretical scaling following
𝑓𝑛/𝑓5 = 𝑂𝑛/𝑂5 = 130.21 meV ⋅ 𝑛2−1

𝑛5 (cf. Eq. (2.34)). As known from [Kaz+14], the
oscillator strengths follow this dependence roughly up to 𝑛 = 10, while they drop drastically
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Figure 2.4 (a) Binding energies 𝐸g −𝐸𝑛 as a function of principal quantum number 𝑛 and
a fit according to Eq. (2.24) with 𝑅𝑦 = 90 meV and 𝛿𝑛,𝑙 = 0.08 (b) Oscillator strengths 𝑓𝑛
normalized to 𝑓5. The black line shows the ideal scaling, the blue line gives the relative
oscillator strength with a band gap shift of 𝛥0 = −172 𝜇eV according to Eq. (5.28) (c)
Linewidths 𝛤𝑛 following the predicted scaling (black line) up to approximately 𝑛 = 10.
For higher 𝑛 they are broader than predicted. (d) The asymmetry parameters 𝑞𝑛 start
around −0.2 for 𝑛 = 2 and continuously approach zero around 𝑛 = 18. For higher 𝑛 they
become even positive.

for higher 𝑛. As explained in detail in Sec. 5.2.4, the relative oscillator strengths can be
calculated as a function of the effective Bohr radius 𝑎B

eff > 𝑎B and effective quantum numbers
𝑛eff > 𝑛, given by the intrinsic band gap shift 𝛥0. Doing so, the drop of oscillator strength
can be described phenomenologically. The resulting curve is shown in blue in the same
panel for 𝛥0 = −172 𝜇eV.
The linewidths follow an 𝑛−3 dependence as well. This dependence is well known from

radiative decay in atomic systems. It stems from the wave function overlap between excited
and ground state [Gal94]. However, in [Sto+18] it was shown that the linewidth of 𝑃
excitons is mainly given by interactions with phonons, i.e. the decay of a 𝑃 state into
the 1𝑆 state by phonon scattering. The 𝑛 dependence is again determined by the overlap
between initial 𝑛𝑃 and final 1𝑆 states. The main contributions are shown to be caused
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Chapter 2 Absorption spectroscopy in Cu2O

by deformation-potential scattering with 𝛤 −
3 /𝛤 −

5 phonons and Fröhlich interaction with LO
phonons. In an earlier calculation in Ref. [Sch+16d] the 𝛤 −

3 /𝛤 −
5 -process was not considered.

In total, this yields the dependence [Sto+18] 2

𝛤𝑛 = 18 meV ⋅ 𝑛2 − 1
𝑛5 . (2.46)

In Fig. 2.4 (c), this dependence is shown as the black solid line, whereas the prefactor is
set to 20 meV to fit the linewdiths best. The higher value results from a slightly higher
temperature in the experiment (1.35 K compared to 1.2 K in [Kaz+14]). The values drop
from 𝛤2𝑃 ≈ 2500 𝜇eV for 𝑛 = 2 down to 𝛤22𝑃 ≈ 6 𝜇eV for 𝑛 = 22, corresponding to ns
lifetimes. However, as already mentioned in [Kaz+14], the linewidths for states with 𝑛 > 10
are larger than predicted by the theoretical scaling. As a result, they start to overlap in the
high-𝑛 regime as shown by the three dark yellow curves in the lower panel of Fig. 2.3. In
Sec. 5.3, the linewidths are investigated at mK temperatures, still showing this broadening.

Finally, the obtained asymmetry parameters as a function of 𝑛 are shown in Fig. 2.4 (d).
They start at 𝑞𝑛 = −0.2 and increase gradually to zero for 𝑛 ≈ 18, meaning that the line
shapes become more symmetric in this spectral range. For higher 𝑛, i.e. closest to the band
gap, the values for 𝑞𝑛 even become positive.

The linewidth broadening and the drop of oscillator strength as well as the positive asym-
metry parameters in the high-𝑛 regime can be traced back to the ionization of states due
to the micro-field distribution induced by charged carriers, as explained in Ref. [Krü+20].
The vanishing oscillator strength finally results in a shifted band gap ̃𝐸𝑔 in accordance with
the phenomenological description, that is used in this thesis.

Beside the 𝑃 exciton Rydberg series even higher angular momentum states can be ob-
served, shown in the insets 𝐼𝐼𝐼 and 𝐼𝑉 in the middle panel of Fig. 2.3. Namely these are 𝐹
excitons with 𝑙 = 3, visible from 𝑛 = 4 onwards on the high energy side of each 𝑃 resonance.
They are split into three visible lines by the cubic part of the 𝐻d term. This is in accordance
to Eq. (2.36), that involves 3𝛤 −

4 terms [The+15]. Their linewidths are about 10 𝜇eV for
𝑛 = 4. From 𝑛 = 6 onwards, one finds even 𝐻 excitons (𝑙 = 5) visible as a single tiny peak
on the high energy side of the three 𝐹 states. They can be identified up to 𝑛 = 7 in pure
absorption spectra and at 𝑛 = 8 in differential transmission (cf. Fig. A.1).

Furthermore, in the lower panel of Fig. 2.3, one can observe additional small resonances
between two 𝑃 exciton lines. They were described in [Grü+16] as dressed states emerging
from a coherent coupling of both adjacent Rydberg states via the ground state in a V-type
level scheme by a single laser source. Due to the close spectral separation of two 𝑃 states
the probe laser drives both transitions with little detuning from each resonance. Since
they are only predicted to appear between coherent states with low rates of dephasing,
their observability serves as a signature for low levels of decoherence and dephasing in the
system. This will be used in Ch. 5.

As a summary, a level scheme of resonance energies of all experimentally found exciton
states of the yellow series is given in Fig. 2.5. It includes data from one-photon absorption
and SHG experiments (from [Mun+18]), both with and without external fields. Their
numeric values are listed in Tab. A.1 in Appendix A.1

2Note that the values given in [Sto+18] have to be multiplied by 2.
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2.5 Absorption spectrum of the whole yellow series
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Figure 2.5 Level scheme of experimentally observable exciton states of the yellow series
in Cu2O. The energies and references are given in Tab. A.1 in Appendix A.1. For each
𝑛, states with different angular momentum are non-degenerate. They are spread over a
certain energy range that decreases as 𝑛−3 (Sec. 4.1.1).
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Chapter 3

Experimental setup

In this chapter, the experimental setup used for the experiments shown in this thesis is
explained. It is optimized for continuous-wave (CW) absorption spectroscopy at low tem-
peratures with a high spectral resolution of 1 neV. The light sources consist of two identical
dye lasers and a white light source. In the first section the focus lies on the laser setup. The
white light excitation is briefly explained in the second section at the end of this chapter.

3.1 Laser spectroscopy
The laser systems (Sirah Matisse DS) used offer a high spectral resolution of 1 neV in locked
mode and about 5 neV in scanned mode. Figure 3.1 shows a sketch of the optical setup
used for single-beam experiments as well as for pump-probe experiments. The main optical
elements are explained in the following.

The dye used is Rhodamine 6G which covers the wavelength range from 620 nm to
565 nm, i.e. from energies below the 1𝑆-Ortho resonance to energies about 30 meV above
the band gap of the yellow series. This wavelength range can be scanned continuously via
software control and is read out by a high-precision wavelength meter (HighFinesse WSU).
The dyes are pumped by a Verdi V-10 from Coherent and a Finesse from Laser Quantum
with a power of 7 W each. The laser light is coupled into a fiber to maintain a stable
beam diameter for all wavelengths. To reduce fluctuations in the signal to a minimum, each
light beam is stabilized by a noise eater (BEOC Laser Power Controller, short: LPC). This
stabilization is important during a wavelength scan in particular, as the output intensity
of the laser may vary strongly. These fluctuations become even more enhanced by the
fibers. The LPC systems used maintain a noise level below 0.5 %. In the following both
beams can be attenuated further to a certain power level with a combination of a half-wave
plate and a Glan-Taylor prism (GTP). Unfortunately, these devices generate unavoidable
Fabry-Pérot interference patterns in the signal in dependence on the scanned wavelength.
In order to reduce these interferences, the devices can be slightly tilted. This reduces the
amplitude of interferences to around 2%. In addition, a pellicle beamsplitter (P) is used in
front of the cryostat to reflect around 4 % of the probe beam to photodiode 1 (PD1). This
signal, called 𝑉Int., contains all interference patterns generated along the optical path up to
this point and serves as a reference signal to smooth the data later on. The diode should
preferably be of the same type as photodiode PD2. Further, both diodes should not generate
additional interferences on its surface. Another source for interference patterns are the
cryostat windows. Therefore, the cryostat is typically tilted slightly around its vertical axis
which allows for a complete elimination of these interferences. The remaining interferences
mainly stem from the sample plate (red) itself. Both beams are focused on the sample with
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3.1 Laser spectroscopy

Figure 3.1 Sketch of experimental pump-probe setup. General abbreviations: 𝜆/2: half-
wave plate. GTP: Glan-Taylor prism. P: Pellicle beamsplitter. PD: Photodiode. MM:
high-speed multimeter. L: achromatic lenses, WL: wavelength. Inside dashed area (op-
tional Lock-In detection scheme): EOM: electro optical modulator. M: electronic mixer,
LP: electronic low-pass filter. G: electronic gain. PD1 measures a reference signal contain-
ing interference patterns from optical devices. PD2 measures the probe laser transmission,
that is passed either directly to multimeter MM2 or to the input of the Lock-In. PD3 mea-
sures the pump laser transmission. The sample (red) is mounted strain free in a cryostat.

lenses L1 and L2. The probe spot has a diameter of about 100 𝜇m and the pump spot is set
to a larger diameter of 300 𝜇m to ensure a preferably homogeneously spread pump power
density. The beam profiles are measured with a beam analyser (Coherent BeamMaster
2408) and diameters are given as the full width at half maximum. The probe laser’s power
is usually set to 1 𝜇W, whereas the pump power is varied. With a probe power of 1 𝜇W, a
negligible influence of the probe power on the system is ensured, while a good signal-to-noise
ratio is still obtained. The powers are measured in front of the cryostat. For an estimation
of the intensity illuminating the sample, reflection losses at the cryostat windows of about
4 % at each side and of about 25 % at the sample surface (index of refraction 𝑛̄ ≈ 3) have
to be considered. Depending on the cryostat, 3 or 5 windows are built in with 6 to 10
surfaces. Combined with the sample surface we estimate the losses to about 40-50 %. For
convenience, only laser powers will be given throughout this thesis.
Both beams are collimated behind the sample and detected by photodiodes (New Focus

Large-Area Photoreciever). The probe beam is detected by photodiode PD2 and the pump
beam by photodiode PD3. With a variable built-in gain they allow for the detection of
signals from mW magnitudes down to tens of nW. For the detection of lower powers on the
order of a few nW or even below, an avalanche diode (Hamamatsu C-5331) or a low-power
photoreciever (Femto FWPR-20 SI) are used (cf. Sec. 5.3). The sample is mounted strain-
free in a cryostat. For temperatures down to 1.35 K, a liquid 4He cryostat is used, either
with or without magnetic coils. For lower temperatures a 3He-4He dilution refrigerator is
necessary.
In a pump-probe measurement scheme, the pump power is usually higher than the probe
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Chapter 3 Experimental setup

power. Although both beams follow different pathways, PD2 might still detect stray light
generated by the pump beam at the sample surface. To reduce the magnitude of this stray
light in direction of PD2 we first use a pinhole in front of collimating lens L1. Second, the
pump polarization is rotated by 90∘ relative to the direction of the probe polarization. Lens
L1 is followed by a GTP in front of the diode. The GTP lets the probe polarization pass, but
reflects the pump polarization. This is important especially in a Lock-In detection scheme
(see below), since the pump stray light is modulated and will be amplified significantly by
the Lock-In device. If not reduced at all, modulated stray light can give rise to significant
offsets starting around 200 𝜇W, as shown in Ref. [Sch18]. Both a pinhole and a GTP are
used in the pump detection in a similar way, but with polarizations rotated by 90∘. The
PD voltages are read out by high-speed multimeters (Keithley 2000) connected to a PC.

To measure an absorption spectrum, the probe laser wavelength is scanned continuously
and signals from all diodes are recorded simultaneously with a LabVIEW based program
on a PC. The scan speed can be adjusted and is typically chosen to cover 8 𝜇eV per second
(2 GHz/s) in the spectral range between 𝑛 = 4 and 𝑛 = 10 and is reduced to 2 to 4 𝜇eV per
second (0.5 to 1 GHz/s) for higher 𝑛. The intensity transmitted by the sample 𝐼T is detected
by PD2 in dependence on the laser light’s wavelength 𝜆. It is given by Lambert-Beers law
[Kli07]

𝐼T(𝜆) = 𝐼0 ⋅ 𝑒−𝛼(𝜆)𝑑 . (3.1)

Here, 𝐼0 is the light intensity without absorption in the sample and 𝛼(𝜆) is the wavelength-
or energy-dependent absorption coefficient. The thickness of the sample is given by 𝑑. To
remove interferences, the probe signal is divided by the wavelength-dependent reference
voltage 𝑉Int.(𝜆) measured by PD1. As all diode voltages are directly proportional to the
detected light intensity 𝑉 ∝ 𝐼, we can evaluate the optical density, except for an unknown
offset

𝑂𝐷(𝜆) = 𝛼(𝜆)𝑑 = − ln (𝐼T(𝜆)/𝐼0)
= − ln (𝑉probe(𝜆)/𝑐loss𝑉Int.(𝜆))
= − ln (𝑉probe(𝜆)/𝑉Int.(𝜆)) + ln (𝑐loss) . (3.2)

The factor 𝑐loss comprises all gain and conversion factors and is chosen to yield an optical
density equal to zero in the spectral range between the 1𝑆 absorption line and the beginning
of the phonon background (see Fig. 2.3), as suggested in [Sch+17a]. In other words, 𝑐loss ac-
counts for the unknown value of 𝐼0, which is not needed to be measured explicitly. It further
takes into account all intensity losses, that occur due to reflections and scattering at both
the sample surface and optical devices, in particular at the cryostat windows. The wave-
length dependence of reflection and scattering is assumed to be small in this energy range
and is neglected. Finally, the adjustment of 𝑐loss as described above results in an absorption
coefficient 𝛼 = 𝑂𝐷/𝑑 of about 33 mm−1 at the band gap energy of ̃𝐸g=2.171914 eV, cf.
Fig. 2.3, comparable to the spectrum shown in [Sch+17a].

If a pump laser is added, a sufficient spatial overlap between both beams is needed. This
is obtained by maximizing the signal height of the differential transmission measured with
the Lock-In scheme described in the next section. The overlap should be adjusted in a daily
routine and preferably measured at the same spectral positions with the same powers of

24
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Figure 3.2 (a) Probe laser transmission around resonance 𝑛 = 12 for zero pump power
and 500 𝜇W. The pump energy is set to 𝑛 = 16. (b) The probe signal at the peak minimum
as a function of time. The oscillations of the pump amplitude are directly transferred to
the probe signal resulting in an AC-amplitude 𝛥𝐼 equal to the difference between the
pumped and unpumped signals. (c) The difference amplitude multiplied with an arbitrary
gain factor plotted against energy. This is the Lock-In signal.

pump and probe, e.g. by probing an exciton with 𝑛 = 12 and a power of 1 𝜇W and pumping
an exciton with 𝑛 = 16 and a power of 200 𝜇W. Further, it should be rechecked and, if
necessary, readjusted at least once per hour within a long measurement series to avoid long-
term drifts in the signals and ensure comparability within the whole measurement series.
In any case, it has to be checked after refilling the Helium bath.

3.1.1 Lock-In detection scheme

To detect differential spectra with high sensitivity, we use a Lock-In detection scheme. The
relevant devices are indicated with the dashed box in Fig. 3.1. The Lock-In device used is
a SR 830 from Stanford Research Systems. The basic concept of the scheme is explained in
the following.
The transmitted probe light 𝐼T is detected with PD2 and its output voltage 𝑉probe is

connected to the input of a Lock-In amplifier. It will be called 𝑉sig in the following. The
pump laser is optically modulated with a frequency 𝜔m and the modulation is assumed to be
sinusoidal for simplicity. The pump laser light will induce a change in the probe transmission
according to an so far unknown interaction mechanism assuming spatial overlap between
both laser spots. Due to the comparably low frequency, we can neglect time-dependent
dynamics in the sample and consider the probe light to follow this modulation directly, but
with an arbitrary offset in phase 𝛩sig. Then, the measured voltage reads 𝑉sig sin(𝜔m𝑡+𝛩sig).
The lock-in amplifier multiplies the input signal with a reference signal 𝑉ref sin(𝜔ref + 𝛩ref)

25



Chapter 3 Experimental setup

and we find

𝑉out = 𝑉sig𝑉ref sin(𝜔m𝑡 + 𝛩sig) sin(𝜔ref𝑡 + 𝛩ref)
= 1

2𝑉sig𝑉ref cos ([𝜔m − 𝜔ref]𝑡 + 𝛩sig − 𝛩ref)
−1

2𝑉sig𝑉ref cos ([𝜔m + 𝜔ref]𝑡 + 𝛩sig + 𝛩ref) . (3.3)

Thus, we obtain two AC signals, one containing the difference frequency 𝜔m − 𝜔ref and one
containing the sum frequency 𝜔m + 𝜔ref of both signals. Usually, the reference frequency
equals the modulation frequency, 𝜔m = 𝜔ref, and the first term in Eq. (3.3) becomes a DC
signal. A low-pass filter removes the second term of high frequency and the signal becomes

𝑉out = 1
2

𝑉sig𝑉ref cos(𝛩sig − 𝛩ref) . (3.4)

Additionally, the reference phase is matched to obtain a maximum signal, i.e. 𝛩ref = 𝛩sig.
The modulation is generated either with a mechanical chopper blade or with an electro-

optical modulator (Linos LM 0202) both maintaining an extinction ratio of more than
1:1000. The frequency is set to 3.333 kHz or a period of about 300 𝜇s, while the modulators
generate fast edges of about 10 ns. Hence, the pump beam can be considered to be switched
on and off producing a rectangular signal with frequency 𝜔ref. The calculation given above
still holds in case of rectangular signals as they can be decomposed into a Fourier sum of
sinusoidal signals. The probe signal is perturbed during half a period.

The modulation scheme is schematically shown in Fig. 3.2. In panel (a), the blue curve
shows the transmitted probe intensity around the absorption line of 𝑛 = 12 and zero pump
power. In a typical CW-scan of the probe energy with an unmodulated pump beam of
500 𝜇W and a pump energy set to 𝑛 = 16, we obtain the red curve, showing a lower
amplitude of absorption on resonance and an amplified absorption on the sides. In case of
a modulated pump beam, the probe laser again scans the resonance. Since the modulation
with a period of 300 𝜇s is fast compared to the scan speed of 1 GHz/s≈ 1 𝜇eV/250ms, the
signal can be interpreted as varying locally at a certain probe energy in time according to
the amplitude variation in the CW-picture. This is shown in Fig. 3.2 (b). The amplitude of
this oscillation is directly proportional to the difference between the transmitted intensities
with and without a pump beam, amplified by an arbitrary gain factor 𝑐gain

𝛥𝐼 = 𝑐gain (𝐼T, pump − 𝐼T, no pump) . (3.5)

The gain can be set at both the diodes and the Lock-In amplifier. The signal is integrated
at the low-pass filter. A time constant of 30-100 ms turns out to be optimal. Finally, we
obtain the DC-signal in Fig. 3.2 (c). Constant offsets in the signals are canceled out in the
difference and only relative signals are measured.

With this scheme, small changes in transmission spectra induced by the pump laser can
be measured with high accuracy and a low level of noise, since only variations around the
frequency 𝜔m are amplified and others are reduced. Additionally one gets rid of interferences
in the probe signal, since they do not change with varying pump power.
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3.2 White light excitation and external fields
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Figure 3.3 Exploded view (a) and view from the
side (b) of the sample holder used for the applica-
tion of electric fields along 𝑘. (1) quartz plates (2)
ITO layer (3) kapton spacer (4) sample (5) free
space filled with liquid helium. From [Hec+17a].

An alternative way to obtain absorption
spectra is to use a broad band white light
source instead of a laser. Here, we use the
LDLS (”Laser Driven Light Source”) from
Energetiq. Before hitting the sample, the
light’s bandwidth is limited to the spec-
tral range of the yellow series by a double
monochromator. The light transmitted by
the sample is dispersed by a second double
monochromator (Spex) and detected with
a CCD camera that yields a resolution of
2.6 𝜇eV. As reported in Ref. [Kaz+14], the
exciton series ends around 𝑛 = 15 with this
excitation scheme, while the exact reason
is still the subject of research. However,
a huge advantage compared to laser exci-
tation is the time required to measure a
spectrum of the spectral range from 𝑛 = 5
to the band gap. It takes about 10 sec-
onds, whereas a laser scan needs about 15
minutes. Hence, white light excitation is
mainly used for measurements in external
fields, where many spectra at various field
strengths are taken.
Magnetic fields are applied by the built-

in superconducting magnet coils in the
cryostats. For electric fields a sample holder
as schematically shown in Fig. 3.3 is used. It
was optimized in the context of Ref. [Hec15]
and shall be briefly explained here.
The sample is mounted between two

quartz plates of 5 mm thickness. They
are covered with indium tin oxide (ITO),
that serves as an electrically conducting
but transparent electrode, and are shifted
slightly relative to each other. The protrud-
ing parts are then covered by an adhesive
copper foil and connected via cables to a
function generator. To avoid direct contact,
both plates are separated by an insulating kapton foil with a recess for the sample (see ob-
ject (3) in Fig. 3.3). The thickness of the foil of 75 𝜇m is chosen to be larger than the
sample thickness of 30 or 50 𝜇m to ensure strain-free mounting. The voltage is applied as
an AC-signal of 1 MHz. The alternating sign avoids field neutralization inside the sample
by surface charges.
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Chapter 3 Experimental setup

3.3 Samples
In this work, four different samples are used. All of them are natural high-quality crystals
of Cu2O from the Tsumeb mine in Namibia and show Rydberg excitons with quantum
numbers 𝑛 > 20. They differ in thickness and orientation. They are denominated 𝐻7, 𝐻93,
𝐻103 and 𝐻98.

Sample 𝐻7 has a thickness of 𝑑 = 34 𝜇m and is known to exhibit the best spectra
concerning the number of observable 𝑛. This sample is used for all measurements without
external fields. The crystal is not oriented along a high symmetry axis. However, for the
dipole excitation of 𝑃-shell excitons, the configuration of light vector k and polarization ̂e
does not matter.

For investigations of quadrupole excitations or the application of external fields, typically
crystals with an orientation along a high symmetry axis are used. These are the samples
𝐻93, 𝐻103 and 𝐻98.

In samples 𝐻93 and 𝐻103, the k-vector is parallel to the direction [110]. The polarization
of linearly polarized incident light can be oriented along both perpendicular directions
̂e||[1 ̄10] or ̂e||[001]. Sample 𝐻93 has a thickness of 𝑑 ≈ 30 𝜇m and sample 𝐻103 has a

thickness of 𝑑 ≈ 50 𝜇m.
Sample 𝐻98 is oriented along the [100]-direction with equivalent directions for the polar-

ization of incident light ̂e||[010] and ̂e||[001].
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Chapter 4

Scaling laws in external electric and magnetic
fields

Atoms, excited to Rydberg states with large principal quantum numbers 𝑛, reveal aston-
ishing properties compared to their corresponding ground states. With increasing 𝑛, not
only their radius but also their dipole moments increase and the strengths of interactions
among each other grow over orders of magnitude. In the same manner, their sensitivity
to external fields rises, opening the possibility to study Rydberg physics and fundamental
properties in the high-field regime, where the interaction energy with external fields exceeds
the Coulomb interaction.
Based on this idea, the investigation of Rydberg excitons in a controlled environment of

external electric or magnetic fields is an important tool to study the physics of highly excited
excitonic states. Compared to atoms, the Rydberg energy of about 90 meV is reduced by
two orders of magnitude which makes the high-field regime accessible with comparably low
experimental effort. Therefore, the regime of ionization in electric fields or the formation
of Landau levels in magnetic fields can be studied extensively.
The effects of external fields on excitons were investigated directly in the years after

their discovery ([Gro62; Age+74; Age77]) with the focus on low-𝑛 states with principal
quantum numbers up to 𝑛 = 9. These experiments already revealed fundamental insights
into analogies and differences to atomic physics and demonstrated the excitonic Stark effect
in electric fields as well as the Zeeman splitting and formation of Landau levels in magnetic
fields.
After the discovery of Rydberg excitons in 2014 [Kaz+14], analogue experiments were

performed with unprecedented resolution and described by microscopic theories including
the detailed aspects of the full Hamiltonian from Sec. 2.3.1 and the exact band structure.
Expansive calculations taking into account the exact band structure allowed a quantitative
description of the experimental data [Sch+17b; Rom+18; Hec+17a]. However, from the
theoretical point of view, these investigations were limited to the regime with 𝑛 ≤ 6. In the
high-𝑛 Rydberg regime, exact solutions of the Hamiltonian become more and more complex,
since the number of involved states increases drastically. In magnetic fields, the high-field
regime reveals signatures of chaotic behavior that was studied with the help of statistical
methods in Refs. [Aßm+16; Fre+17].
To address this regime further, we focus here on scalable quantities that can be uniquely

determined in the low-𝑛 regime and interpolated for the high-𝑛 regime. The validation of
scaling laws for excitonic properties both experimentally and theoretically provides access
to the understanding of these properties in the high-𝑛 regime.
Therefore, we study in this chapter characteristic scaling laws of Rydberg excitons mainly
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by the use of external electric and magnetic fields. From Ch. 2 we already know the scaling
of the radius with 𝑛2 and binding energy with 𝑛−2, or the inverse lifetime and oscillator
strength with 𝑛−3 (𝑛 ≫ 1). Here, we find scaling laws for various other significant physical
properties in dependence on the principal quantum number 𝑛, named below, and compare
the results with the analogue phenomena known from atomic physics. This allows for a more
comprehensive comparison between Rydberg excitons and Rydberg atoms. Surprisingly we
find mostly similarities between the scaling behaviors of excitons and atoms even though
the underlying mechanisms are different in most cases. The aspects are considered from
both experimental and theoretical points of view.

In Sec. 4.1, the effect of an electric field on the exciton spectrum is considered and
explained within the Stark effect model. States that are optically dark without external
fields can be activated by application of an electric field. First of all, this is used to study
the spectral width of the exciton multiplets as a function of 𝑛. The results can be explained
with the use of the Hamiltonian from Ch. 2. Next, scaling properties of the polarizability
(Sec. 4.1.2), resonance voltage and anticrossing energy splittings (Sec. 4.1.3), as well as the
disappearance due to ionization by the electric field (Sec. 4.1.4) are investigated.

This is followed by the study of magneto-optical properties in Sec. 4.2, where we inves-
tigate excitonic spectra in magnetic fields. We find a crossover field strength 𝐵𝑟 from the
Coulomb-dominated exciton regime to a Landau-level-dominated regime (Sec. 4.2.2) and a
scaling law for the crossing of states originating from adjacent multiplets (Sec. 4.2.3).

The experimental observations are in good agreement with theoretical predictions. Fi-
nally, the results are summarized in Tab. 4.1 with a comparison to atomic physics.

The results presented here are published as parts of the following publications: [Hec+17a;
Hec+17b; Hec+18c; Hec+18e]. The theoretical investigations shown here are developed by
Marina Semina and Mikhail Glazov from Ioffe Institute of the Russian Academy of Sciences.

4.1 External electric fields
The spectral width of a multiplet is the energy difference between the lowest state in a
multiplet and the highest. In particular these are the 𝑆(1)

1/2 and 𝐷(1)
3/2 Ortho-excitons (cf.

Sec. 2.3.1)1. Without external fields, these states are forbidden in dipole but weakly allowed
in quadrupole transitions (cf. see Sec.2.4). However, the quadrupole transitions are weak
and negligible for 𝑛 > 3.

To get optical access to these states we subject them to an electric field. The underlying
physics is known as the Stark effect and shall be summarized briefly in the following.

For simplicity, we assume a two-state system of a dark 𝑆-shell state and a dipole allowed
𝑃-shell state with non-degenerate energies 𝐸𝑆 and 𝐸𝑃. The electric field is applied parallel
to the light vector k, i.e. along the 𝑘||[001] direction in this example. A scheme of the
sample holder can be found in Fig. 3.3 ind Sec. 3.2. The perturbation operator is then
given by

𝐻ℰ = −𝑒𝓔r = −𝑒ℰ𝑧 (4.1)
1Note that in principle, the 𝑛𝑆-Para exciton would be the lowest state of a multiplet, the energy of which

is about the magnitude of exchange interaction below the Ortho-state. However, since the contribution
of exchange interaction scales as 𝑛−3 (see below), it’s non-visibility does not change the results.
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with the field amplitude ℰ = |𝓔| and coordinate of relative motion r.
Since 𝑧 is a basis function of 𝛤 −

4 the electric field is an operator of odd parity (in analogy
to the electric-dipole transition in Sec. 2.1). With a linear polarization ̂e||[100] one excites
the dipole-allowed wave function, according to [Kos+66]:

𝛹−
4𝑥 = 1√

2
(𝛤 +

5𝑥𝑦𝛤 −
4𝑦 + 𝛤 +

5𝑥𝑧𝛤 −
4𝑧) . (4.2)

Here, 𝛤 +
5,𝑖𝑗 (𝑖, 𝑗 = 𝑥, 𝑦, 𝑧) represent the spin linear combinations of the 𝛤 +

7 valence band and
the 𝛤 +

6 conduction band Bloch amplitudes, given by Eqs. (2.29), (2.30) and (2.31), and 𝛤 −
4𝑦

and 𝛤 −
4𝑧 can be identified with the 𝑃-shell envelopes 𝑃𝑦 and 𝑃𝑧 (cf. Eq. (2.33)).

Since the electric field in 𝑧 direction couples to 𝑃𝑧 states only we consider off-diagonal
matrix elements of the form

𝛾𝑆𝑃 = 𝛾0ℰ ⟨𝛤 +
5𝑥𝑧𝑃𝑧 ∣ 𝑧 ∣ 𝛤 +

5𝑥𝑧𝑆⟩
= 𝛾0ℰ ⟨𝑃𝑧 | 𝑧 | 𝑆⟩ , (4.3)

where we used ⟨𝛤5𝑖 ∣ 𝛤5𝑗⟩ = 𝛿𝐾
𝑖𝑗 (𝛿𝐾

𝑖𝑗 is the Kronecker symbol) and set 𝛾0 = −𝑒/
√

2. Since
they are linear combinations of the former pure states, the new eigenstates contain both an
𝑆 and a 𝑃 character. In particular, this leads to the visibility in absorption of the former
dark 𝑆 state due to its 𝑃 admixture. In addition, we find new eigenenergies that can be
obtained by perturbation theory up to second order (see for example [Coh+07]). For the
former pure 𝑆 state it reads in this particular case

̃𝐸𝑆 = 𝐸𝑆 + 𝛾0ℰ ⟨𝑆 | 𝑧 | 𝑆⟩ + 𝛾2
0ℰ2 | ⟨𝑃𝑧 | 𝑧 | 𝑆⟩ |2

𝐸𝑆 − 𝐸𝑃
. (4.4)

Here, the correction term to first order describes the linear Stark effect between degenerate
states and vanishes due to parity. Since 𝑧 transforms as 𝛤 −

4 , the electric field will only
couple states of opposite parity. In case of degenerate states with opposite parity as given
in hydrogen, this term dominates, see below. The last term describes an energy shift ∝ ℰ2

and is known as the quadratic Stark effect. Since 𝐸𝑆 − 𝐸𝑃 < 0, the 𝑆 state is shifted to
lower energies.
This is what we observe in the spectra in Fig. 4.1. It shows contour plots of the second

derivative of white light transmission spectra in the spectral range of 𝑛 = 5 and 𝑛 = 6
as a function of applied voltage 𝑈. The spectra are recorded with the white light setup
described in Sec. 3.2. For zero field, the transmission spectrum is shown in the left panel.
The absorption peaks are translated into a white color coding in the panels (a) to (c),
whereas darker colors denote no absorption.
The configuration discussed above with k=[001] and ̂e=[100] is shown in panel (a). We

observe a Stark-splitting of non-degenerate states belonging to the multiplets of 𝑛 = 5 and
𝑛 = 6 with quadratically developing energies, indicated by the dashed lines. States, that are
dark without electric field become visible due to the state mixing with odd-parity excitons.
In particular, this can be seen for the states of lowest and highest energy. These are the
𝑆(1)

1/2 and 𝐷(1)
3/2 Ortho-excitons (red dashed lines).

Obviously, the system involves many more states than only two 𝑃 and 𝑆 states as in the
simple model. For a theoretical description one needs to include matrix elements between
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Figure 4.1 Left panel: Transmission spectrum of 𝑛 = 5 and 𝑛 = 6 at 1.35 K without
electric field, dominated by large 𝑃 and small 𝐹 absorption peaks. Panels (a), (b) and
(c) show contour plots of the second derivative of transmission spectra for different ap-
plied voltages. White colors denote absorption, dark colors denote no absorption. With
increasing field, a Stark fan grows that includes also former dark states. In configurations
(a) and (b), 𝑆(1)

1/2 and 𝐷(1)
3/2 excitons become visible (red dashed lines), whereas they stay

dark in configuration (c). The overall number of lines is reduced in the configuration in
(c). Adapted from [Hec+17a].

all involved states, namely between 𝑃 and 𝐷 or 𝐹 and 𝐷 excitons and higher angular
momentum states. Strictly speaking, the electric field couples dipole-active 𝛤 −

4 states to all
states including 𝛤 −

4 ⊗ 𝛤 −
4 = 𝛤 +

1 ⊕ 𝛤 +
3 ⊕ 𝛤 +

4 ⊕ 𝛤 +
5 . Additionally one needs to include states

of different principal quantum numbers 𝑛. Nevertheless, the coupling to states of different
𝑛 will have a minor impact on the energy corrections of a particular state due to the larger
difference in energy. A detailed theoretical analysis that includes states up to 𝑛 = 6 is given
in [Hec+17a].

Now, we consider different configurations of k and ̂e. The electric field is applied along
the k||[110] axis, whereas the polarization is chosen to be linear and along the directions
̂e||[001] or ̂e||[1 ̄10]. The corresponding spectra are shown in Fig. 4.1 (b) and (c).
Again, we restrict our analysis to the simple case of states with 𝑃 and 𝑆 character. With

the polarization chosen along ̂e||[001], one excites a linear combination of dipole allowed
states

𝛹−
4𝑧 = 1√

2
(𝛤 +

5𝑥𝑧𝛤 −
4𝑥 + 𝛤 +

5𝑦𝑧𝛤 −
4𝑦) . (4.5)
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The electric field along [110] is described by

𝐻E = −𝑒ℰ(𝑥 + 𝑦) (4.6)

and the matrix elements now read

𝛾𝑆𝑃 = 𝛾0ℰ ⟨𝛤 +
5𝑥𝑧𝑃𝑥 + 𝛤 +

5𝑦𝑧𝑃𝑦 ∣ 𝑥 + 𝑦 ∣ 𝛤 +
5𝑥𝑧𝑆 + 𝛤 +

5𝑦𝑧𝑆⟩
= 𝛾0ℰ (⟨𝑃𝑥 | 𝑥 | 𝑆⟩ + ⟨𝑃𝑦 ∣ 𝑦 ∣ 𝑆⟩) . (4.7)

In this configuration, we receive non-vanishing matrix elements in analogy to the configu-
ration discussed above. Hence, the overall appearance of the spectra in panel (b) is similar
to the spectra shown in panel (a).
However, in the polarization ̂e||[1 ̄10] (panel (c)) we find a different situation: The 𝑆(1)

1/2 and
𝐷(1)

3/2 Ortho-excitons do not gain oscillator strength with rising electric field. In general the
Stark fan shows an overall-reduced number of states compared to the other configurations.
At least for the 𝑆 states, one can find an explanation within our simple model:
First, we excite all three components of 𝛤4 states

𝛹−
𝑔𝑒𝑠 = 𝛹−

4𝑥 − 𝛹−
4𝑦 = 1√

2
(𝛤 +

5𝑥𝑦𝛤 −
4𝑦 + 𝛤 +

5𝑥𝑧𝛤 −
4𝑧 − 𝛤 +

5𝑥𝑦𝛤 −
4𝑥 − 𝛤 +

5𝑦𝑧𝛤 −
4𝑧)

= 1√
2

(𝛤 +
5𝑥𝑦(𝛤 −

4𝑦 − 𝛤 −
4𝑥) + (𝛤 +

5𝑥𝑧 − 𝛤 +
5𝑦𝑧)𝛤 −

4𝑧) . (4.8)

Here, the electric field does not couple to the 𝑃𝑧 component and we can write

𝛾𝑆𝑃 = 𝛾0ℰ ⟨𝛤 +
5𝑥𝑦(𝑃𝑦 − 𝑃𝑥) ∣ 𝑥 + 𝑦 ∣ 𝛤 +

5𝑥𝑦𝑆⟩

= 𝛾0ℰ (⟨𝛤 +
5𝑥𝑦𝑃𝑦 ∣ 𝑦 ∣ 𝛤 +

5𝑥𝑦𝑆⟩ − ⟨𝛤 +
5𝑥𝑦𝑃𝑥 ∣ 𝑥 ∣ 𝛤 +

5𝑥𝑦𝑆⟩)
= 0 . (4.9)

Remarkably, both contributions cancel out each other and the off-matrix elements vanish.
Hence, dark 𝑆 states cannot be activated in this particular configuration.
This is different for other dark states as, for instance, 𝐷-shell excitons with 𝛤 +

3 ⊕ 𝛤 +
5

envelope symmetry: The basis functions read 2𝑧2 − 𝑥2 − 𝑦2 and
√

3(𝑥2 − 𝑦2), from which
the latter gives non-vanishing contributions in Eq. (4.9). A detailed analysis shows that the
𝐷5/2 excitons still obtain oscillator strength, whereas the 𝐷(1)

3/2 does not [Hec+17a].
This strong polarization dependence clearly results from the cubic symmetry of our system

which is different from the atomic case. It turns out to be a useful experimental tool,
especially as we are interested in the physics at high 𝑛. With polarization ̂e||[1 ̄10] we can
reduce the number of states in the Stark fan, in particular of the 𝑆(1)

1/2 and 𝐷(1)
3/2 states. It

simplifies the analysis of the spectra and enables the investigation of the polarizability of 𝑃
states (Sec. 4.1.2) as well as the identification of anticrossings between adjacent multiplets
(Sec. 4.1.3). The comparison of both polarizations is shown in Fig. 4.2, now for all states
𝑛 > 4.
Beside the differences arising due to the strong polarization dependence, we observe for

both polarizations a disappearance of states with increasing voltage due to ionization. The
effect is more pronounced the higher the 𝑛 is. States on the high energy side within a
multiplet are found to be more robust than states on the opposite side. This is discussed
in Sec. 4.1.4.
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Figure 4.2 Contour plots of the second derivative of transmission spectra with k||[110]
at 1.35 K, for all states from 𝑛 = 5 to the band gap. The number of visible states per
multiplet is reduced for polarization ̂e||[1 ̄10], shown in panel (a), allowing for a better
resolution of resonances between adjacent multiplets. Panel (b) shows a closeup of the
resonance area between 𝑛 = 6 and 𝑛 = 7, revealing that the states actually anticross.
Panel (c) shows the same spectral range with polarization ̂e||[001]. With increasing 𝑛, the
ionization voltage decreases. Adapted from [Hec+17b].

4.1.1 Multiplet splitting

Due to the activation of dark states, we can estimate their binding energy by extrapolating
the dispersions back to zero electric field. From their binding energies, we can evaluate the
spectral width of a given multiplet 𝑛. This width decreases with increasing 𝑛 as can be seen
in Figs. 4.1 and 4.2. As discussed in Sec. 2.3.1, the energy splittings stem from deviations
from a parabolic valence band dispersion that manifest in a 𝑝4-dependence in the 𝐻d term.
The excitonic energies within a multiplet are further split by spin-orbit interactions 𝐻so
and states with 𝑙 = 0-contribution are further affected by the exchange interaction 𝐻exch.

In summary, the relevant contributions read (here, simplified with amplitudes 𝐴, 𝐵e, 𝐵h,
𝐶 and in Gaussian units)

𝐻d + 𝐻so + 𝐻exch = 𝐴𝑝4 + 𝑒2

𝜖𝑠𝑟3 [𝐵e(l ⋅ se) + 𝐵h(l ⋅ sh)] + 𝐶𝛿(r)(se ⋅ sh) . (4.10)

Furthermore, central-cell corrections might be necessary for states with 𝑙 = 0, that can also
be included into a term ∝ 𝛿(r).

To derive an 𝑛 dependence we consider the terms leading in the inverse quantum number
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that read (see for example [Coh+07])

⟨𝑝4⟩𝑛𝑙𝑚 = ( ℏ
𝑎B )

4 4
𝑛3(𝑙 + 1)

, (4.11)

⟨ 1
𝑟3 ⟩

𝑛𝑙𝑚
= 1

(𝑎B)3
1

𝑛3𝑙(𝑙 + 1/2)(𝑙 + 1)
, (4.12)

⟨𝛿(r)⟩𝑛𝑙𝑚 =
𝛿𝐾

𝑙,0

𝜋
1

𝑎B𝑛3 , (4.13)

with the quantum-mechanical average over an exciton state 𝛹𝑛𝑙𝑚(r) given by ⟨…⟩𝑛𝑙𝑚. 𝛿𝐾
𝑙,0 is

the Kronecker symbol, giving contributions only for 𝑙 = 0. We see, that all these corrections
produce level shifts and splittings decreasing as ∝ 𝑛−3.
This finding is in accordance with the quantum defect model, for which one can estimate

the 𝑛-dependent scaling via a Taylor expansion of the binding energy for small 𝛿𝑛,𝑙:

𝐸b
𝑛,𝑙 = 𝑅𝑦

(𝑛 − 𝛿𝑛,𝑙)2 ≈ 𝑅𝑦
𝑛2 +

2𝛿𝑛,𝑙𝑅𝑦
𝑛3 −

3𝛿2
𝑛,𝑙

𝑛4 . (4.14)
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Figure 4.3 Multiplet widths as a function of prin-
cipal quantum number 𝑛. Black squares give ex-
perimental data, the red line shows a fit with the
expected 𝑛−3 scaling according to the discussion
in the text. The black line is a fit to the data with
𝑛−2.75±0.02. The grey shaded area indicates the fit
error. From [Hec+17b].

Again, the 𝑙-dependent corrections, com-
prised in 𝛿𝑛,𝑙, lead in first order to changes
in the binding energies following an 𝑛−3-
scaling.
We compare this expectation with the ob-

tained multiplet widths from the spectra in
Fig. 4.2 extrapolated to zero field. The
widths are plotted against 𝑛 in a double
logarithmic plot in Fig. 4.3. They decrease
from about 3 meV for 𝑛 = 3 to less than 0.1
meV for 𝑛 > 10. A fit to the data with 𝑛−𝑑

yields 𝑑 = 2.75 ± 0.02, which is in reason-
able agreement with the expected scaling.
The fit error is indicated by the grey area.
The red line gives a fit with the theoreti-
cal scaling following an 𝑛−3 law. The de-
viations from the expected scaling start to
occur around 𝑛 = 10 and might be traced
back to the broadening of linewidths, start-
ing around 𝑛 = 10 as well (see Fig. 2.4 (c)),
that might influence the line shapes even in
the second derivative. Still, the 𝑛−3 fit falls
within the experimental error of the data points.

4.1.2 Polarizability

The quadratic shift of the exciton energy in an electric field is determined by the polariz-
ability 𝛼𝑛𝑙 of the state. In the simple two-state model discussed before, the polarizability
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is given by the last term in Eq. (4.4)

𝛥𝐸𝑛𝑙 = −𝛼𝑛𝑙ℰ2 ∝ | ⟨𝑃𝑧 | 𝑧 | 𝑆⟩ |2

𝐸𝑆 − 𝐸𝑃
ℰ2 . (4.15)

To calculate the 𝑛 dependence, the information from Sec. 4.1.1 can be used: Since states
with the same 𝑛 but different angular momentum quantum numbers 𝑙 are spread by the
𝐻d term and exchange interactions, their energy difference given in the denominator scales
as 𝑛−3. The numerator contains the dipole operator matrix element between neighboring
states of the same 𝑛, that scales as 𝑛2. Therefore ⟨𝑟𝑛,𝑙⟩ |2 ∝ 𝑛4 and we end up with

𝛼𝑛,𝑙 ∝ 𝑛7 . (4.16)

This scaling is different for hydrogen, where states within the same multiplet are regarded
as degenerate. The full solution of the Hamiltonian is typically given in parabolic coordi-
nates 𝑛1 and 𝑛2, for which the Stark problem is separable and has analytical solutions.
They are related to 𝑛 and 𝑚 via

𝑛 = 𝑛1 + 𝑛2 + |𝑚| + 1 . (4.17)

The energy of hydrogen in an electric field reads in atomic units up to second order
[Lan+77; Gal94]

𝐸𝑛𝑛1𝑛2𝑚 = − 1
2𝑛

+ 3
2

ℰ(𝑛1 − 𝑛2)𝑛 − ℰ2

16
𝑛4[17𝑛2 − 3(𝑛1 − 𝑛2)2 − 9𝑚2 + 19] . (4.18)
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Figure 4.4 Polarizability 𝛼𝑛,𝑙 of 𝑃 (left panel) and
𝑆 excitons (right panel) as a function of 𝑛. Black
squares are experimental data obtained from the
dispersions in Fig. 4.2. The red lines show a fit
∝ 𝑛7 as predicted by theory. The black lines show
a fit with 𝑛𝑑 with 𝑑 = 7.16 ± 0.14 for 𝑃 excitons
and 𝑑 = 6.82 ± 0.22 for 𝑆 excitons. The fit errors
are indicated by the grey area. From [Hec+17b].

Here, the linear term in ℰ between states
of the same 𝑛 and different 𝑙 can give
non-zero contributions. The last term de-
scribes the quadratic shift and scales as 𝑛6,
which is different from the non-degenerate
case. Strictly speaking, the differentiation
between linear and quadratic Stark shifts
depends on the experimental resolution and
the regime of applied field strengths that is
considered. As long as the multiplet width
and splitting of states is large compared
to the energy shift induced by the field, a
quadratic dispersion will be observable for
low enough fields. With increasing field
strength it transforms into a linear shift.
Since the multiplet widths shrink with 𝑛
one observes almost linear Stark fans in the
high-𝑛 regime of Fig. 4.2.

Experimentally, we evaluate the polar-
izability 𝛼𝑛,𝑆,𝑃 from the quadratic disper-
sions of the 𝑆 and 𝑃 states with increasing
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voltage in Fig. 4.2. We choose the configu-
rations of k and ̂e where they are best ob-
servable. For 𝑃 excitons this is possible up to 𝑛 = 12 in polarization ̂e||[1 ̄10], whereas the
dispersions of 𝑆 excitons can be identified up to 𝑛 = 10 in ̂e||[001].
The obtained values are shown in Fig. 4.4. The polarizability increases from about

5 𝜇eV/V2 for 𝑛 = 5 to about 2000 𝜇eV/V2 for 𝑛 = 12, following the expected scaling with
𝑛7 as indicated by the red line. A fit with a power law ∝ 𝑛𝑑 yields 𝑑 = 7.16 ± 0.14 for
the 𝑃 states, which is in perfect accord with the model within the error. For 𝑆 states we
find similar polarizabilities as for 𝑃 states. Therefore, an 𝑛7 law describes the data within
satisfying agreement, which is confirmed by the exponent 𝑑 = 6.82 ± 0.22 of a variable fit.

4.1.3 Electric field-induced anticrossings
Taking a closer look at the overall appearance of the Stark structure in Fig. 4.2, one finds
states of adjacent multiplets 𝑛 and 𝑛+1 coming into resonance at a certain field strength ℰ𝑟.
Fig. 4.2 (b) shows a closeup of the resonance between multiplets 𝑛 = 6 and 𝑛 = 7. Instead
of a pure crossing - as observed in magnetic fields (cf. Sec. 4.2.3) - the states avoid each
other and anticrossings appear. Since the electric field couples states of different parities,
the states that come into resonance become mixed and avoid each other. First, we focus
on the resonance field strengths ℰ𝑟 at which these anticrossings appear. In a next step, we
analyze the spectral width of each anticrossing. To derive a scaling law for the resonance
field strength, we can neglect the initially quadratic dispersions as we are interested in the
regime of higher fields, where the dispersions are almost linear. Hence, we assume a linear
Stark shift as it is given in first order by the hydrogen model in Eq. (4.18).
Since the states at the edge of a Stark fan belong to the quantum numbers {𝑛1 = 𝑛 −

1, 𝑛2 = 0} and {𝑛1 = 0, 𝑛2 = 𝑛−1}, which gives 𝑛1 −𝑛2 ≈ ±𝑛, one finds a first-order Stark
splitting ∝ 𝑛2 [Lan+77]. The lowest and highest states of adjacent multiplets 𝑛 and 𝑛 + 1
will cross at a field strength ℰ𝑟, that is given by

𝐸𝑛 = 𝐸𝑛+1

⇔ − 1
2𝑛2 + 3

2
ℰ𝑟𝑛2 = − 1

2(𝑛 + 1)2 − 3
2

ℰ𝑟(𝑛 + 1)2

⇔ ℰ𝑟 = 2𝑛 + 1
3(2𝑛6 + 6𝑛5 + 7𝑛4 + 4𝑛3 + 𝑛2)

. (4.19)

The first term dominates and we find

ℰ𝑟 ∝ 𝑛−5 . (4.20)

We use the experimental configuration shown in Fig. 4.2 (a), the one with a reduced
number of states, to investigate the anticrossings experimentally. The field strengths ℰ𝑟 in
the experiment are assumed to be directly proportional to the applied voltages 𝑈𝑟. These
can be read out from the spectra and show a strong decrease with 𝑛. The obtained values
are shown in Fig. 4.5 (a) as a function of principal quantum number 𝑛. 𝑈𝑟 decreases from
8 V for 𝑛 = 5 to about 40 mV for 𝑛 = 13. The data obviously exhibits a power law. A
fit ∝ 𝑛−𝑑 yields 𝑑 = 5.33 ± 0.11, as shown by the black line. The error is indicated by
the grey area. The fit is in reasonable agreement with the expectation of 𝑑 = 5, that is
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additionally shown by the red line. Deviations might stem from the conversion between
applied voltage and field strength, whose proportionality constant might vary slightly for
high and low voltages. Note that the influence of surface charges or charged defects can
lead to depolarization effects in the crystal, making the exact evaluation of the present field
strength complicated.
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Figure 4.5 (a) Resonance voltage 𝑈𝑟 of anticrossing between states of adjacent multiplets
𝑛 and 𝑛 + 1 as a function of principal quantum number 𝑛. The values follow an 𝑛−𝑑

dependence with 𝑑 = 5.33 ± 0.11 (black line) that is close to the theoretical expectation of
𝑑 = 5 (red line). (b) Energy splitting of anticrossings at voltages 𝑈𝑟 as a function of 𝑛. A
fit to the data shows a scaling with 𝑛−𝑑 with 𝑑 = 3.30 ± 0.42, which slightly deviates from
the expected scaling with 𝑛−4. In both panels, the grey areas indicate fit errors. From
[Hec+17b].

From the data in Fig. 4.2 (a), we can even determine the energy splitting at the anticross-
ing, see the closeup of the anticrossing in Fig. 4.2 (b). The obtained values for the states
from 𝑛 = 5 to 𝑛 = 10 are shown in Fig. 4.5 (b). The splitting energies decrease from about
80 𝜇eV for 𝑛 = 5 down to about 10 𝜇eV. We obtain quite large error bars from the fact
that the splittings are only slightly larger than the linewidths of the involved lines in the
second-derivative spectra. Nevertheless, the data allows for an estimation of a scaling law.
A power-law fit with 𝑛−𝑑 yields 𝑑 = 3.30 ± 0.43 shown by the black line and grey area. The
red line gives a fit to the data with the theoretical expectation ∝ 𝑛−4 that still describes
the data within the experimental errors.

A derivation of the theoretical expectation for the anticrossing energy can be found in
Refs. [Kom+80] and [Gal94] for non-hydrogenic atoms. In analogy, we derive the splitting
for excitons from the contributions of the 𝐻d-term of the Hamiltonian. The anticrossing
energy is then given by

𝛿𝐸𝑎𝑛𝑡𝑖 = 2 ∣∫ 𝑑r𝛹 ∗
𝑛′𝑛′

1𝑛′
2𝑚(r)𝐻d𝛹𝑛𝑛1𝑛2𝑚(r)∣ . (4.21)

We insert ∑𝑙 |𝑛𝑙𝑚⟩ ⟨𝑛𝑙𝑚| = 1 for 𝑛 and 𝑛′, and use the following relation between hydro-
genic states with adjacent principal quantum numbers 𝑛′ = 𝑛 ± 1 and the quantum defect
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4.1 External electric fields

𝛿𝑛,𝑙 [Gal94]

∫ 𝑑r𝛹 ∗
𝑛′𝑙𝑚(r)𝐻d𝛹𝑛𝑙𝑚(r) ∼

𝛿𝑛,𝑙𝑅𝑦
𝑛3 .

Finally, taking into account that

∑
𝑙

∫ 𝑑r𝛹 ∗
𝑛′𝑛′

1𝑛′
2𝑚(r)𝛹𝑛𝑙𝑚(r) ∝ 1

𝑛 − 𝑚
,

we obtain the 𝑛-dependent scaling

𝛿𝐸𝑎𝑛𝑡𝑖 ∼
𝛿𝑛,𝑙𝑅𝑦

𝑛3(𝑛 − 𝑚)
∝ 𝑛−4 , (4.22)

that is shown in by the red line in Fig. 4.5.

4.1.4 Ionization
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Figure 4.6 Absorption spectrum of 𝑛 = 11 ex-
citon multiplet for different applied voltages from
0 (top) to 0.5 V (bottom). The dominant 𝑃 ab-
sorption vanishes, whereas 𝐹 states mainly gain
oscillator strength. Lines are shifted vertically for
clarity. From [Hec+17b].

Another observation in Fig. 4.2 is that the
emergence of Stark fans results in a disap-
pearance of lines in the spectra, which is
associated with exciton dissociation. For
states with higher 𝑛 the field strengths nec-
essary for a multiplet to vanish are smaller
than for states with low 𝑛. Whereas the
Stark fan of the 𝑛 = 5 multiplet is visible
up to 20 V, for 𝑛 = 10 already 2 V are suffi-
cient to completely dissociate the multiplet.
Figure 4.6 shows a closeup of the absorp-

tion spectrum around the 𝑛 = 11 multiplet
in an increasing electric field. Without elec-
tric field, the spectrum is dominated by the
𝑃 absorption line. With increasing field, the
𝑃 line broadens and vanishes, while on its
high energy side new features appear, that
are associated with high angular momen-
tum states, such as 𝐷-, 𝐹- or 𝐺-shell states.
The increase in visibility of these states is
directly connected to the shuffling of oscil-
lator strength between the excitons of dif-
ferent parity through the electric field as discussed at the beginning of Sec. 4.1. At high
fields, the emerging feature on the high energy side starts to broaden as well.
However, it is interestingly to note that the latter is still growing, while the 𝑃 exciton

line already disappeared completely. We conclude, that low angular momentum states are
more susceptible to ionization than high-𝑙 states.
Now, we focus on the ionization of 𝑃 excitons. In analogy to atomic physics, we assume

an electric field in 𝑧 direction according to Eq. (4.1) that tilts the Coulomb potential along
the field axis. The Hamiltonian for this process reads (in atomic units) [Gal94]

𝐻 = −1/|𝑧| − ℰ𝑧 . (4.23)
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Chapter 4 Scaling laws in external electric and magnetic fields

The potential exhibits a local maximum along the field axis at 𝑧′ = 1√
ℰ of magnitude

𝐻(𝑧′) = 2
√

ℰ. Classically, ionization occurs, when the binding energy −1/2𝑛2 equals this
value:

−2
√

ℰ = − 1
𝑛2

⇔ ℰ = 1
16𝑛4 . (4.24)

The bound exciton states are moved into the continuum and can no longer be observed.
Including additionally the first-order Stark shifts of the excitons following 𝑛2ℰ gives

ℰ = 1/(9𝑛4) [Gal94] with the same scaling on 𝑛.
Quantum-mechanically the tunneling rate through the potential barrier increases even

before the classical ionization threshold and is indicated by changes in the line shape. We
expect the peak area to decrease and the linewidth to increase exponentially. Both values
can be determined by fits with an asymmetric Lorentzian, as described by Eq. (2.43) in
Sec. 2.5. For the evaluation, care has to be taken regarding the electric-field range, since
the line shape may be influenced by neighboring emerging absorption features. Hence, the
analysis is restricted to field strengths where the 𝑃 absorption line is still isolated from such
influences. In Fig. 4.6, this regime corresponds to field strengths below 0.25 V.

The ionization voltage is given by the value, where the peak area has dropped to 1/𝑒.
In general, the peak area will also decrease due to mixing with other angular momentum
states. However, according to Fig. 4.7, the redistribution of oscillator strength seems to have
a minor contribution to the absolute change in peak area in the range of the considered
voltages. The obtained ionization voltages are shown in Fig. 4.7 (a).

The ionization voltage drops by about one order of magnitude from 𝑛 = 10 to 𝑛 = 18.
The decrease is well described by a fit with a power law 𝑛−𝑑 and 𝑑 = 3.79 ± 0.34, as shown
by the black line and grey area. This is close to the expectation ∝ 𝑛−4, shown by the red
line, according to Eq. (4.24).

As mentioned before, when tunneling becomes possible, the linewidth is expected to
broaden, as carriers tunnel through the potential barrier into the continuum and reduce
the bound states’ lifetime. The extracted linewidths for 𝑛 = 10 up to 𝑛 = 16 are shown
in Fig. 4.7 (b). The left panel gives the fit results for odd states, the right panel for even
states. Following Refs. [Mer+74; Aro+78] the linewidth broadening can be described by

𝛤𝑛 ∝ exp(− 3
2𝑛3ℰ

) . (4.25)

A fit to the data according to this dependence is shown by the dashed lines.
Indeed, the linewidths show an exponential increase, that is more pronounced at lower 𝑛.

For high-lying states, a broadening can be hardly observed within experimental accuracy
before the states vanish, although they are expected to be even more sensitive to the electric
field. This can be understood by the fact, that the dissociation voltage decreases faster
(∝ 𝑛−4) than the critical field strength of broadening (∝ 𝑛−3). The high-lying states simply
ionize before a pronounced broadening can be seen.

Finally, we come back to the observation that states on the high energy side of a Stark fan
are more stable to ionization than states on the low energy side. This can be explained by
the charge distribution along the z axis. The states in a Stark fan are linear combinations of
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Figure 4.7 (a) Ionization voltage of 𝑃 excitons as a function of principal quantum number
𝑛. At this voltage, the area below a peak has dropped to the value 1/𝑒. The values follow
roughly an 𝑛−4 dependence, given by the red line, with a slight deviation at high 𝑛. A fit
with 𝑛−𝑑 yields 𝑑 = 3.79 ± 0.34, shown by the black line and grey area. (b) Linewidths
of 𝑃 excitons with 𝑛 = 10 to 𝑛 = 16 as a function of increasing voltage. Odd states are
shown in the left panel, even states are shown in the right panel. Low-lying states show a
broadening according to Eq. (4.25), indicated by the dashed lines. High-lying states show
no broadening until they are dissociated. From [Hec+17b].

the pure exciton states of different parity without field. We find the same constituents in a
state on the high energy flank than on the low energy flank, but with opposite phase. This
results in a different charge distribution along the 𝑧 axis. In fact, states on the high energy
side of a Stark fan have a higher probability density on the opposite side of the tunnel
barrier than low energy states and are therefore less affected by dissociation processes.

4.2 External magnetic fields

In this section, we focus on scaling laws in external magnetic fields. Figure 4.8 shows a
contour plot of the absorption spectrum from 𝑛 = 4 up to about 2.184 eV in a magnetic
field from 0 to 7 T at 1.35 K. The field is applied in Faraday configuration (B||k, where B is
the magnetic field strength). This spectrum is taken from Refs. [The15] and [Aßm+16]. In
the regime with 𝑛 ≥ 6, the density of states becomes too large to address every eigenstate
individually. Therefore, statistical methods were used in these works to analyze the dis-
tribution of level spacings between adjacent states at a fixed magnetic field strength. The
spectra revealed clear signatures of quantum chaos in the regime above 2.170 eV, where the
spectra are dominated by anticrossings.
In the low-𝑛 regime, from 𝑛 = 3 to 𝑛 = 7, the field dependence could even be reproduced

quantitatively by extensive theoretical models, for both Faraday and Voigt configurations
for different polarizations (Refs. [Sch+17b; Rom+18]).
In general, the effect of an external magnetic field on an exciton is obtained in the

following way. In analogy to Sec. 2.1, the momentum operator is replaced by p → p + 𝑒A,
whereas one typically chooses B||𝑧 and A = −1

2r × B, (B = ∇ ⋅ A = (0 0 𝐵𝑧)).
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Chapter 4 Scaling laws in external electric and magnetic fields

Figure 4.8 Contour plot of the yellow exctions in a magnetic field from 0 to 7 T at 1.35 K.
The field is applied in faraday configuration. The dashed line indicates the band gap at
zero field. The rectangles in the upper left mark spectral areas from which closeups are
shown in Fig. 4.10. The level dispersions show a change from a 𝐵2 dependence to a linear
𝐵 dependence that indicates the crossover from the Coulomb-dominated regime to Landau
level formation. The data is taken from Refs. [Aßm+16] and [The15] and is reanalysed
here. Adapted from [Hec+17b].
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4.2 External magnetic fields

The relative motion kinetic energy then reads (see, for example, Ref. [Gro+12])

𝐻rel
kin = 1

2𝜇
[p + 𝑒A]2 = 1

2𝜇
[p − 𝑒

2
r × B]

2

= 1
2𝜇

p2 + 𝑒
2𝜇

(r × p)z𝐵𝑧 + 𝑒2𝐵2
𝑧

8𝜇
(𝑥2 + 𝑦2) . (4.26)

With the angular momentum l𝑧 = (r × p)𝑧 we find the Hamiltonian

𝐻 = 𝐻0 + 𝑒
2𝜇

l𝑧 ⋅ 𝐵𝑧 + 𝑒2𝐵2
𝑧

8𝜇
(𝑥2 + 𝑦2) , (4.27)

with the paramagnetic shift (second term) and diamagnetic shift (third term). 𝐻0 describes
the hydrogen-like unperturbed system (cf. Eq. (2.11) in Sec. 2.3), while we assume K = 0
here.
In general, the magnetic field acts also on the spins in the system. For excitons these are

the quasi-spin 𝐼 as well as both electron and hole spins se and sh. The relevant Hamiltonian
reads [Sch+17b]

𝐻𝐵 = 𝜇𝐵[𝑔𝑐se + (3𝜅 + 𝑔𝑠/2)I − 𝑔𝑠sh] ⋅ B/ℏ . (4.28)

Here, 𝜇𝐵 is the Bohr magneton and 𝑔𝑐 and 𝑔𝑠 are the g-factors of electron and hole. 𝜅 is
the 4th Luttinger parameter. In total, the coupling to 𝐵 leads to the well known Zeeman
effect responsible for the splitting and shifting of lines with increasing magnetic field. This
is described in detail in Refs. [Sch+17b] and [Rom+18] for different polarizations and in
both Faraday and Voigt geometry.
In order to find a simple approximation for the magnetic field behavior that enables the

extrapolation to the high-𝑛 regime it is sufficient to disregard Zeeman spin splittings in the
analysis carried out here. In the following, the data from Fig. 4.8 is reanalyzed under a
different point of view. The following studies focus on resonances of states from adjacent
multiplets at intermediate field strengths as well as the formation of Landau levels in the
high-field regime.

4.2.1 Crossover field strength to Landau quantization

First, the transition from the Coulomb-dominated exciton behavior at low magnetic field
strengths to the magnetic field-dominated formation of Landau levels is discussed.
Both regimes can be identified in Fig. 4.8: At low fields, the absorption lines clearly

show a weak diamagnetic 𝐵2 dependence that transforms into a stronger paramagnetic
shift linear in 𝐵 at higher fields. Despite the splitting into a multitude of diverging lines at
low fields, the states seem to appear within a bundle around a particular Landau level in
the linear high-field regime.
Landau levels describe the circular movement of charged particles of mass 𝑚 with a

cyclotron frequency 𝜔𝑐 = 𝑒𝐵/𝑚. They form quantized orbits perpendicular to the magnetic
field axis. Their energy dispersion can be deduced from the model of a harmonic oscillator
and is given by 𝐸 = (𝑛 + 1

2)ℏ𝜔𝑐. With the classical kinetic energy of the particle one finds
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Chapter 4 Scaling laws in external electric and magnetic fields

the extension 𝑙𝑐,𝑛 of a Landau level

1
2

𝑚𝜔2
𝑐 𝑙2𝑐,𝑛 = (𝑛 + 1

2
) ℏ𝜔𝑐

⇔ 𝑙𝑐,𝑛 = √2 (𝑛 + 1
2

)√ ℏ
𝑚𝜔𝑐

≈
√

2𝑛√ ℏ
𝑒𝐵

, 𝑛 ≫ 1 . (4.29)

The extension of the ground state Landau level is called the magnetic length 𝑙𝑐. It reads

𝑙𝑐 = √ ℏ
𝑒𝐵

= 25.6nm/√𝐵[T] , (4.30)

with 𝐵 in units of Tesla. Without a magnetic field, the exciton extension is given by
𝑟𝑛,𝑙 ≈ 3𝑎B

2 𝑛2 (cf. Eq. (2.17)). The crossover field strength is found where the Landau level
extension and exciton extension become equal, 𝑙c,n = 𝑟n,l, and is found to scale as

𝐵c,n ∝ 𝑛−3 . (4.31)
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Figure 4.9 (a) Red circles, right ordinate: crossover field strength 𝐵c,n from 𝐵2-like to 𝐵-
linear behavior. The red curve shows a fit ∝ 𝑛−3 according to the theoretical expectation
from Eq. (4.31). The trend is confirmed by the black line, that represents a fit with
𝑛−𝑑 and 𝑑 = 2.94 ± 0.05. Black squares, left ordinate: Landau level radius 𝑙c,n at 𝐵c,n
calculated with Eq. (4.29). Black solid line: Coulomb extension ∝ 𝑛2 with Eq. (2.17) that
coincides with the Landau level extension. (b) Resonance field strengths 𝐵r of the first
crossing between states of two adjacent multiplets. The red line is a fit ∝ 𝑛−4 according
to the expectation from Eq. (4.35), the black line and the grey area give a fit ∝ 𝑛−𝑑 with
𝑑 = 3.72 ± 0.08. From [Hec+17b].

It can be roughly estimated from the spectra in Fig. 4.8. To this end, the energy of the
center of a bunch of lines in the Landau regime is extrapolated linearly to lower energies
for each 𝑛. The crossover field strength 𝐵c,n is given as the point where the dispersion
deviates from the linear behavior and transforms into the quadratic 𝐵 dependence at low
fields. This field strength clearly drops with increasing 𝑛. At this point, an exciton with
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4.2 External magnetic fields

principal quantum number 𝑛 transforms into a Landau level transition with the same prin-
cipal quantum number. The experimentally found crossover field strengths 𝐵𝑐,𝑛 are shown
in Fig. 4.9 (a).
The field strengths follow nicely the expected 𝑛−3-dependence as shown by the dashed

red line. A power-law fit ∝ 𝑛−𝑑 reveals 𝑑 = 2.94 ± 0.05, confirming the expectations. In
addition, we calculate the Landau level extension from these field strengths according to
Eq. (4.29) and show them as black squares. These follow nicely the 𝑛2-Coulomb extension
of the exciton wave function, shown as the black solid line.
This finding additionally confirms the huge extension of the Rydberg exciton wave func-

tions and shows that the description with a uniform dielectric function on these length
scales is valid.

4.2.2 Landau level quantization and highest quantum number 𝑛max

The transition from the excitonic regime into the Landau level regime leads to the ques-
tion of the highest observable quantum number 𝑛max. The magnetic field squeezes the
wave function ∝ 1/

√
𝐵, which leads to an increasing overlap of electron and hole. Hence,

especially high-lying states gain oscillator strength and their corresponding Landau level
transitions are visible far above the band gap. To focus on this spectral regime, Fig. 4.10
shows closeups of the areas 𝐼 and 𝐼𝐼 marked in the upper left of Fig. 4.8.
In this regime, we are far away from the possibility to identify the individual states of

each multiplet. We rather observe equally spaced bunches of states, each bunch belonging
to a multiplet with principal quantum number 𝑛. The spacing increases, since the levels
diverge linear with 𝐵 and become nicely separated.

Figure 4.10 (a) Closeups of area 𝐼 (a) and 𝐼𝐼 (b) in Fig. 4.8. Adapted from [Hec+18e].

Each of these Landau level transitions can in principle be traced back to its excitonic
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Chapter 4 Scaling laws in external electric and magnetic fields

counterpart with the same quantum number at zero magnetic field and in the highest
zooming level, in Fig. 4.10 (b), we can identify Landau levels up to 𝑛 = 75 at 0.55 T,
which is the highest Landau level quantum number ever observed. In [Viñ+98], a similar
experiment is reported in GaAs, where the dispersions can be traced back to 𝑛 around 20
or 30.

Following Eq. (4.29) one finds an extension of 425 nm at 𝐵 = 0.55 T. The excitonic
counterpart of this Landau level would, if observable, have an extension of 𝑟n,1 ≈ 9.4 𝜇m.
Due to the magnetic field, the wave function is squeezed by a factor of 20. With a cyclotron
frequency of 𝜔𝑐 = 𝑒𝐵/𝜇 = 258 GHz, it takes 24.4 ps for a full rotation around the circumfer-
ence of about 2.7 𝜇m. Here we used the reduced mass 𝜇 and a field strength of 𝐵 = 0.55 T.
This yields a velocity of 1.1 ⋅ 105 m/s. For a state with 𝑛 = 75 without magnetic field, the
virial theorem leads an average velocity of 3.8 ⋅ 103 m/s. Thus, we find an enormous speed
up by roughly two orders of magnitude through the magnetic field for these high orbits.

4.2.3 Magnetic field-induced crossings

Next, we note that states of adjacent multiplets with principal quantum numbers 𝑛 and
𝑛 + 1 come into resonance at a certain field strength in analogy to avoided crossings in
electric fields.

To highlight these crossings, a contour plot of the second derivative of the data from
Fig. 4.8 is shown in Fig. 4.11 with a closeup for the states 𝑛 ≥ 7 up to 2 T in the lower
panel. The second derivative further increases the contrast between large 𝑃 and tiny 𝐹
absorption peaks. The spectra are shown in a color scale, where blue colors represent
absorption features.

From this data, the resonance field strengths 𝐵r can be determined with high accuracy.
They are shown in Fig. 4.9 (b) as a function of 𝑛. They decrease from about 𝐵r = 2 T for
𝑛 = 6 down to 𝐵r = 0.04 T for 𝑛 = 16. For higher 𝑛, the crossings cannot be resolved. A
fit to the data with a power law ∝ 𝑛−𝑑 reveals 𝑑 = 3.72 ± 0.08 (black solid line with grey
shaded area), which is close to 4, shown by the red line.

The scaling behavior can be traced back to the Hamiltonian in Eq. (4.27). We identify
the term (𝑥2 + 𝑦2) with the squared average radius 𝑟n,l of the exciton and obtain [Gal94]

⟨𝑟2⟩𝑛𝑙𝑚 = 𝑛2

2
[5𝑛2 + 1 − 3𝑙(𝑙 + 1)] ∝ 𝑛4 . (4.32)

Now we can estimate the energy of a state with quantum numbers 𝑛 and 𝑙 in a magnetic
field (here, in atomic units, according to Ref. [Gal94])

𝐸𝑛,𝑙 ≈ − 1
2𝑛2 + 𝑚𝐵

2
+ 𝐴𝑙𝑛4𝐵2 . (4.33)

Here, 𝑚 denotes the magnetic quantum number and 𝐴𝑙 is the 𝑙-dependent magnitude of
the diamagnetic shift. For simplicity, we neglect fine structure splittings ∝ ls and quantum
defects, which is justified for high 𝑛 due to the 𝑛−3 decrease of these terms (Sec. 4.1.1).

As mentioned above, we consider crossings between the highest and lowest states of
adjacent multiplets 𝑛 and 𝑛+1, i.e. states with quantum numbers {𝑛, 𝑙max = 𝑛−1, 𝑚max =
𝑛 − 1} and {𝑛 + 1, 𝑙max = 𝑛, 𝑚min = −𝑛}.
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Figure 4.11 Contour plot of the second derivative of the data from Fig. 4.8. Panel (b)
shows a closeup of the high-𝑛 range up to 2 T as indicated in (a). Additionally, spectral
areas of crossings are marked, as discussed in the text. Adapted from [Hec+17b].

For excitons, the crossings occur at rather low magnetic fields compared to the hydrogen
case. Therefore, we can neglect the diamagnetic term. The crossing occurs at

𝐸𝑛,𝑚=𝑛−1 = 𝐸𝑛+1,𝑚=−𝑛

⇔ − 1
2𝑛2 + (𝑛 − 1)𝐵r

2
= − 1

2(𝑛 + 1)2 + −𝑛𝐵r
2

⇔ 𝐵r = 2𝑛 + 1
2𝑛5 + 3𝑛4 − 𝑛2 . (4.34)

The first term dominates, and
𝐵r ∝ 𝑛−4 , (4.35)

shown as the red line in Fig. 4.9.
Due to the different optical selection rules one would only excite states with 𝑚 = 0 or

𝑚 = ±1 in the atomic case. Therefore, the paramagnetic shift is negligible and only the
𝐵2-term has to be considered. In this case, we can neglect the second term and find for the
crossing field between states 𝑛 and 𝑛 + 1

𝐸𝑛 = 𝐸𝑛+1

⇔ − 1
2𝑛2 + 𝐴𝑙𝑛4𝐵2

r = − 1
2(𝑛 + 1)2 + 𝐴𝑙(𝑛 + 1)4𝐵2

r

⇔ 𝐵2
r = 2𝑛 + 1

2𝐴𝑙𝑛2(𝑛 + 1)2
1

4𝑛3 + 6𝑛2 + 4𝑛 + 1
. (4.36)
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Here, the dominating term gives 𝐵2
r ∝ 𝑛−6 and we find 𝐵r ∝ 𝑛−3, which is different from

the excitonic case.

4.3 Conclusions

In this chapter, properties of Rydberg excitons in external electric and magnetic fields and
important scaling laws were studied.

The activation of dark states with even envelope function by application of an electric
field was demonstrated. In contrast to the atomic case, the cubic symmetry gives rise to
polarization-dependent optical selection rules which allow one to tune the number of visible
states within a Stark fan. This turned out to be a helpful experimental tool for the further
investigation of fundamental properties in external fields, in particular in the high-𝑛 regime.

The extrapolation of energy dispersions to zero field allowed us to study the multiplet
width and especially its scaling with 𝑛. Its decrease with 𝑛−3 is in full agreement with the
theoretical expectation from the full Hamiltonian in Sec. 2.3.1 and the excitonic quantum
defect model. The investigation of the quadratic dispersion of states with increasing elec-
tric field strength allowed for the determination of the polarizability of 𝑆 and 𝑃 states in
accordance with the expected 𝑛7 scaling.

The high-field regime, where anticrossings between adjacent multiplets can be observed
was shown to be reached with applied voltages below 20 V. Both the voltage of the first
anticrossing and the energy splitting between the involved states are in good agreement
with the theoretical expectations known from atomic physics. In this regime, also the
ionization of states in an electric field was observed and discussed. The decrease of oscillator
strength and the broadening of lines was shown to follow the model descriptions within good
agreement.

In a magnetic field, the crossover from the Coulomb-dominated regime to a Landau level
formation was observed and shown to follow an 𝑛−3 dependence, expected from the wave
function squeezing down to the Landau orbit extension. In the high-field regime, the highest
Landau level could be assigned to the quantum number 𝑛max = 75, the highest observed so
far. An investigation of the limitation of 𝑛max without magnetic fields is given in the next
chapter.

Similar to the behavior in electric fields, crossings between adjacent multiplets could be
observed in magnetic fields, the scaling of which fits to the paramagnetic shifts. Compared
to atoms, the different optical selection rules due to the crystal environment allow for the
observation of high angular momentum states which results in a dominating paramagnetic
term. This is different from the atomic case, where the diamagnetic terms dominate. An
overview of all studied properties and the underlying physical origin is given in Tab. 4.1 for
both atoms and excitons.

In conclusion, Rydberg excitons show mostly similar scaling laws compared to their
atomic counterparts, whereas the physical origin is different. While in the atomic case,
the scaling laws originate from deviations from the 1/𝑟 Coulomb potential, the excitonic
scaling laws result from deviations of a parabolic valence band dispersion. Differences in
the scaling laws stem from the different optical selection rules of both systems. While for
atoms, only transitions with 𝛥𝑙 = ±1 are optically allowed, the crystal symmetry allows for
the direct observation of the whole exciton multiplet. The determination and verification
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4.3 Conclusions

Rydberg origin Rydberg origin
atoms excitons

Zero field

Multiplet splitting ∝ 𝑛−3

due to (except for DCP ∝ 𝑛−3 DPD
quantum defect hydrogen)

Electric field

Polarizability ∝ 𝑛7 splitting ∝ 𝑛7 splitting
(∝ 𝑛6 for by DCP by DPD
hydrogen)

Resonance field of ∝ 𝑛−5 Stark effect ∝ 𝑛−5 Stark effect
states from multiplets
𝑛 and 𝑛 + 1

Anticrossing energy ∝ 𝑛−4 DCP ∝ 𝑛−4 DPD
at first resonance

Ionization voltage ∝ 𝑛−4 Stark effect ∝ 𝑛−4 Stark effect

Magnetic field

Crossover field to ∝ 𝑛−3 Landau ∝ 𝑛−3 Landau
magnetoexciton quantization quantization

Resonance field of ∝ 𝑛−3 diamagnetic shift ∝ 𝑛−4 paramagnetic shift
states from multiplets due to OSPS due to OSDAM
𝑛 and 𝑛 + 1 by DPD

state mixing
Table 4.1 Legend: DCP = deviation from 1/𝑟 Coulomb potential; DPD = deviation from
parabolic dispersion; OSPS = observation of 𝑆 and 𝑃 states only due to selection rules;
OSDAM = observation of states with different from 𝑙 = 0, 1 angular momenta.

of these 𝑛-dependent scaling laws allows one to extrapolate physical concepts valid at low
𝑛 to the high-𝑛 regime, where the exact solutions of the Hamiltonian become too complex
to calculate due to the immense density of states. In this context, the results described in
this chapter serve as a basis for future studies in the high-𝑛 regime of Rydberg excitons.
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Chapter 5

Rydberg excitons in an ultralow-density
plasma

The impact of a plasma on Coulomb-bound states is a complex problem and was studied
intensively for atoms as well as for excitons in semiconductors and is well described in the
literature [Ebe+76; Kra+86; Zim88b; Kre+05].

In this chapter, the excitonic Rydberg series is investigated in the presence of an electron-
hole plasma. Here, we use a pump laser with a photon energy above the band gap to create
a constant density of electron-hole pairs and study the change in the absorption spectra of
Rydberg excitons obtained by a second probe laser. Most of the results can be found in
[Hec+18b].

First, the basic concepts for the description of a plasma are briefly summarized in Sec. 5.1.
The self-energy correction (5.1.1), screening of the Coulomb interaction (5.1.2) and the Mott
effect (5.1.3) are introduced, following the description in [Kre+05].

In Section 5.2 and following, the effects observed in the experiment are compared to a
theory based on the Debye model, developed by the groups of Prof. Scheel and Prof. Stolz
from the University of Rostock. We observe a shift of the band gap to lower energies with
increasing plasma density. The bound states vanish into the continuum when the band gap
crosses their energy which causes the excitonic absorption lines to disappear. Note that the
model described here is based on the description given in Ref. [Hec+18a], whereas recent
studies [Sem+19; Sem+] expand and improve the theoretical description beyond the Debye
model. The recent studies will be discussed in Sec. 5.4.

We apply the theory also to the case of zero pump power, where the presence of residual
intrinsic free electrons and holes determines the highest observable quantum number 𝑛max.
In this regard, two further experimental approaches are summarized in the third section of
this chapter, Sec. 5.3. There, the absorption spectrum in dependence on both laser power
and temperature is studied to explore the experimental factors that limit the observability
of higher principal quantum numbers 𝑛max. Most of the results can be found in [Hec+18a]
and [Hec+20] as well as in the bachelor thesis of David Janas [Jan17]. In that section,
measurements at temperatures below 1.35 K are shown that were achieved by the use of a
3He-4He dilution refrigerator (Oxford Kelvinox system) operated with help from Dr. Rico
Schwartz from the University of Rostock.

5.1 Theoretical background
In general, the description of a plasma depends on its density 𝜌 and can be divided into the
realms of degenerate and non-degenerate plasmas. The transition between both regimes
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5.1 Theoretical background

is determined by the plasma degeneracy parameter 𝜌𝑎 ⋅ 𝛬3
a with the thermal wavelength

𝛬a = √2𝜋ℏ2/(𝜇𝑎𝑘𝐵𝑇 ). The index 𝑎 denotes the particle species. We consider a plasma to
be non-degenerate, if 𝜌𝑎𝛬3

𝑎 ≪ 1 and degenerate, if 𝜌𝑎𝛬3
𝑎 ≫ 1 [Kre+05]. In the experiments

presented here, we find low plasma densities 𝜌eh around 1 𝜇𝑚−3. Assuming an average
plasma temperature for electrons and holes of 5 K one finds 𝜌eh𝛬3

eh = 1.7 ⋅ 10−4 ≪ 1,
justifying a description in terms of a non-degenerate plasma model, i.e. the Debye theory
in particular.

5.1.1 Self-energy

A particle with charge 𝑒𝑎 at a position r = v0𝑡, where v0 is its velocity and 𝑡 is the
time, will polarize a plasma in its surrounding, creating an induced electrostatic potential
𝛷ind(r, 𝑡). The potential energy of this particle is changed by the interaction with the total
field of all plasma particles and may be described by the so-called self-energy 𝛴𝑎(𝑣0) =
𝑒𝑎𝛷ind(r, 𝑡)|𝑟=𝑣0𝑡. In the static limit for a particle at rest (v0 = 0), it can be shown to be
𝛴𝑎(0) = − 𝜅𝑒2

𝑎
4𝜋𝜖0𝜖𝑠

, with the inverse screening length 𝜅, that is a function of plasma-density
𝜌𝑎 and given by [Kre+05]

𝜅 = √𝜌𝑎𝑒2/(𝜖0𝜖𝑠𝑘𝐵𝑇sc) . (5.1)

Here, 𝑘𝐵 is the Boltzmann constant and 𝑇sc is the screening temperature of the plasma,
that will be discussed in more detail later. The total interaction energy of an electro-neutral
system with 𝑁𝑎 particles in a plasma phase is then given by

𝑈int = 1
2

∑
𝑎

𝑁𝑎𝑒𝑎𝛷ind(r𝑎) = −1
2

∑
𝑎

𝑁𝑎
𝜅𝑒2

𝑎
4𝜋𝜖0𝜖𝑠

. (5.2)

Thus, the mean contribution of an individual particle to the total interaction energy is given
by the averaged self-energy

𝛥𝑎 = −1
2

𝜅𝑒2
𝑎

4𝜋𝜖0𝜖𝑠
. (5.3)

In other words, a particle’s energy in a plasma is lowered compared to that of a free particle
by this self-energy correction [Kre+05]. The particle’s energy is described the Hamiltonian

𝐻P
𝑎 (𝑝a) = 𝑝2

a
2𝑚𝑎

+ 𝛥𝑎 . (5.4)

The first term corresponds to the dispersion of the free particle’s kinetic energy.
The description given above is an elementary approach to describe the self-energy cor-

rection. Much more sophisticated models using quantum theory of many-body systems can
be found in [Kre+05] as well as in e.g. [Zim+78] or [Sem+19].

5.1.2 Screening of the Coulomb potential

As we are interested in the behavior of (excitonic) bound states surrounded by a plasma
rather than a single particle, effects of the plasma on the binding energy 𝐸b

𝑛 shall be
considered here. The presence of free carriers leads to a shielding of the pure Coulomb
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Chapter 5 Rydberg excitons in an ultralow-density plasma

potential of the bound exciton states which now has to be described by the Debye potential

𝑉Debye(𝑟) = − 1
4𝜋𝜖0𝜖𝑠

𝑒2

𝑟
𝑒−𝜅𝑟 , (5.5)

with the inverse screening length 𝜅 or inverse Debye radius 𝑟−1
𝐷 mentioned above (Eq. (5.1)).

For small values of 𝜅 the screening is weak, large values correspond to a strong screening.
The Debye radius determines the length, at which the Coulomb potential has fallen to the
value 1/𝑒. For weak screening (small values of 𝜅), we can expand the exponential to first
order, 𝑒−𝜅𝑟 ≈ 1 − 𝜅𝑟 and find

𝑉Debye(𝑟) ≈ 1
4𝜋𝜖0𝜖𝑠

(−𝑒2

𝑟
+ 𝜅𝑒2) + 𝒪(𝑒2𝜅2) . (5.6)

Thus, in first order, the effect of screening on the system is to increase the energy of a
two-pair state by an amount 1

4𝜋𝜖0𝜖𝑠
𝜅𝑒2 as it screens the Coulomb potential. In a qualitative

picture, the states close to the continuum edge will be shifted above the ionization energy.
This leads to a finite number of bound states, in contrast to the bare Coulomb-like system
which gives rise to an infinite number of bound states [Rog+70].

5.1.3 Mott effect

Now we consider the Hamiltonian of a bound state consisting of an electron and a hole,
i.e. an exciton, surrounded by an electron-hole plasma. The energies of both electrons and
holes are modified by the two effects discussed above - self-energy correction (Eq. (5.4)) and
screening of the Coulomb potential (Eq. (5.5)):

𝐻P
eh = 𝑝2

e
2𝑚e

+ 𝛥e + 𝑝2
h

2𝑚h
+ 𝛥h + 𝑉Debye(𝑟)

= 𝑝2
e

2𝑚e
+ 𝑝2

h
2𝑚h

+ 𝛥eh + 𝑉Debye(𝑟) . (5.7)

Here, the term 𝛥eh = 𝛥e + 𝛥h can be identified with the continuum energy 𝐸cont
[Kre+05],[Zim+78], which is the lowest energy of the free particles (Eq. (5.4) at zero mo-
mentum 𝑝 = 0)

𝐸cont = 𝛥e + 𝛥h = 𝛥eh = − 𝜅𝑒2

4𝜋𝜖0𝜖𝑠
. (5.8)

For an excitonic system in a semiconductor, this is the band gap 𝐸g that is renormalized
by many-particle corrections, such as the self-energy corrections, caused by the presence of
a plasma. In the following, the discussion is limited to the Debye model and will only take
into account self-energy corrections.

In the regime of weak screening, we see from Eq. (5.6) and Eq. (5.8) that the energy
increase caused by screening is compensated in first order in 𝜅 by a decreasing band gap
energy 𝐸g = 𝛥eh

𝐻P
eh ≈ 𝑝2

e
2𝑚e

+ 𝑝2
h

2𝑚h
+ 1

4𝜋𝜖0𝜖𝑠
(−𝑒2

𝑟
+ 𝜅𝑒2 − 𝜅𝑒2⏟⏟⏟⏟⏟

=0
) + 𝒪(𝑒2𝜅2) . (5.9)
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5.2 Influence of an electron-hole plasma on the Rydberg exciton spectrum

Thus, we see that in a first-order approximation, the energies of excitons surrounded by
a plasma of small density are equal to the ones of a bare Coulomb potential. For a much
more substantial description of excitonic energies influenced by a plasma, one may refer to
[Sem+19].
In terms of plasma density 𝜌eh, we find a square-root dependence of the band gap shift,

connecting Eqs. (5.1) and (5.8), as long as 𝑇sc = const.:

𝛥eh ∝ 𝜅 ∝ 𝜌−1/2
eh . (5.10)

As the band gap is decreasing with increasing plasma density 𝜌eh, it may cross the en-
ergy of an excitonic state. At this point, the bound electron-hole state vanishes, as it
is moved above the continuum edge. This is called the Mott effect and the plasma den-
sity corresponding to the crossover point is called the Mott density 𝜌Mott [Mot61; Mot68;
Sem+09]. The Mott effect of excitons in semiconductors was extensively studied theo-
retically (e.g. [Zim+78; Sem+09; Zim88a; Man+10; Man+12]) and experimentally (e.g.
[Ego+77; Sha+77; Feh+82]), mostly with a focus on the disappearance of the ground state
exciton line. The Mott condition then reads [Zim88a]

𝐸cont(𝜌Mott) = 𝐸1S (5.11)

and is found to take place in Cu2O at an electron-hole-density around 𝜌Mott=3⋅1018 cm−3

= 3 ⋅ 106 𝜇m−3 [Man+10]. In the following, we report on the analogue phenomenon for
highly excited Rydberg excitons where the Mott effect already occurs at much smaller
electron-hole densities.

5.2 Influence of an electron-hole plasma on the Rydberg exciton
spectrum

Now we describe the experimental approach to study the impact of an electron-hole plasma
on Rydberg excitons. We use the pump-probe setup as described in Ch. 3 with two CW
laser beams. The pump laser is fixed at an energy 𝐸pump = 2.20 eV, i.e. about 28 meV
above the band gap, while the probe laser scans the spectrum with a low power of 1 𝜇W.
The sample used is 𝐻7, cooled down to 1.35 K. The pump beam is not modulated and
the non-modulated probe signal is detected by a photodiode. With a pump energy above
the band gap the pump laser excites mainly free electron-hole pairs via direct excitation,
whereas also an indirect creation via Auger processes is possible (see Sec. 5.2.1).
Figure 5.1 shows the recorded absorption spectra from 𝑛 = 10 up to the band gap

for pump powers starting in the 𝜇W range up to 12 mW. The absorption background
is indicated with dashed lines for each pump power. As described in Chapter 2, in this
spectral region it consists mainly of the sum of phonon-assisted absorption into yellow and
green 𝑛𝑆 excitons and an exponentially growing Urbach tail which merges into a part with
constant absorption at ̃𝐸g = 𝐸g + 𝛥 indicating the position of the band gap. This point
is marked with red arrows for every pump power. The energy is given as the difference to
the nominal band gap of 𝐸g = 2.17208 eV. Already at zero pump power (red spectrum)
we measure a finite band gap shift of 𝛥 = 𝛥0 ≈ −150 𝜇eV. With increasing pump power,
the spectral position of the obtained band gap ̃𝐸g shifts to lower energies and so does the
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Figure 5.1 Absorption spectra of Rydberg excitons from 𝑛 = 10 onwards for different
pump laser powers. The pump laser energy is fixed at 2.20 eV. Top trace shows absorption
at zero pump power. Dashed lines indicate the background with an exponentially increas-
ing Urbach tail and a flat absorption above the band gap. The band gap is indicated
by the red arrows. Traces are shifted vertically for clarity. Zero energy corresponds to
𝐸g = 2.17208 eV. Recorded at 𝑇 = 1.35 K. From [Hec+18b].

beginning of the continuum absorption. Thus, the band gap shift may be divided in a
power-dependent part 𝛥eh created by laser-induced electron-hole pairs and a constant shift
𝛥0 that is attributed to charged impurities in the crystal that always contribute to a finite
band gap shift, even without additional laser excitation. As mentioned in Sec. 2.5, this is
confirmed by a recent publication from Krüger et al. [Krü+20], that reproduces this shift by
a microscopic model based on an inhomogeneous micro-field distribution originating from
these impurities. Here, we treat this shift 𝛥0 phenomenologically, given by an inherent
density of charged impurities 𝜌0.

The laser-induced plasma density 𝜌eh adds up to the inherent density, 𝜌 = 𝜌0 + 𝜌eh,
leading to a total band gap shift observed in the experiment 𝛥 given by 𝛥2 = 𝛥2

0 + 𝛥2
eh

(see Eq. (5.10)). At the same time, the energies of the sharp excitonic lines do not shift
with increasing pump power as indicated by the vertical blue lines. First, this is in line
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5.2 Influence of an electron-hole plasma on the Rydberg exciton spectrum

with the rough approximation made before in Sec. 5.1.3 that the influence of the band gap
shift on the exciton energy is compensated by a screened Coulomb potential. However, it
is still remarkable that the lines do not shift at all within 𝜇eV resolution and both effects
seem to compensate each other completely. As mentioned at the beginning of this chapter,
a recent study by Semkat et al. [Sem+19] improves the understanding of the impact of a
plasma on the exciton lines. It indeed predicts line shifts for states with principal quantum
numbers 𝑛 > 10 of the order of hundredth of 𝜇eVs at densities close to the Mott density
of the corresponding state. Note that small energy shifts can be observed in more recent
measurements that are extended to lower 𝑛 compared to the data shown in Fig. 5.1 and
that are part of current investigations (cf. Sec. 5.4).
Next, the linewidths do not change drastically before the states vanish into the continuum.

Only for high pump powers around 5 mW, an emerging broadening can be observed for the
lower states. Thus, up to moderate powers a possible lifetime reduction via scattering can
be excluded as a possible explanation for the disappearance of the exciton states. This
interpretation is in line with the behavior of the intermediate peaks arising between two
Rydberg exciton states. As discussed in Sec. 2.5 in detail, these stem from the coherent
coupling of the adjacent exciton states and are predicted to appear only for low levels of
dephasing [Grü+16]. In the spectra in Fig. 5.1, they do not vanish before the corresponding
adjacent exciton lines. Also here, carrier scattering would lead to an enhanced dephasing of
excitons and suppress these lines. The observed broadening of linewidths at higher powers is
still the subject of ongoing research. A recent calculation in Ref. [Sem+] predicts linewidth
changes caused by the plasma on the order of 1 𝜇eV and below only. Hence, the broadening
might be caused by a different mechanism.
While the linewidths hardly change, the peak areas of the resonances decrease contin-

uously with approaching band gap until the lines vanish completely when the band gap
crosses their energy which is the equivalent of the Mott effect but for highly excited states:
An exciton can be observed in the spectra as long as its binding energy 𝐸b

𝑛 is larger than
the band gap shift 𝛥 leading to the following condition for the maximal visible quantum
number 𝑛max in analogy to Eq. (5.11)

𝑛max = √ 𝑅𝑦
|𝛥|

∝ 𝜌−1/4
eh , (5.12)

assuming a description within the Deybe model (Eq. (5.10)). As we will see now, the Mott
densities for highly excited Rydberg excitons are orders of magnitude smaller than for the
ground state, indeed justifying a description by the formulas of the Debye model described
in the previous section.
Figure 5.2 shows the calculated band gap shifts 𝛥eh as a function of plasma density 𝜌eh

for two different screening temperatures 𝑇sc of 1.35 K and 10 K according to Eqs. (5.1) and
(5.8). Additionally the binding energies of the states 𝑛 = 10, 15, 20 and 25 are shown. At a
temperature of 1.35 K, plasma densities of 1 𝜇m−3 are already sufficient to generate a band
gap shift as large as the binding energy of the state 𝑛 = 10, while the state 𝑛 = 25 disappears
at even smaller densities around 0.01 electron-hole pairs per 𝜇m3. To further highlight the
sensitivity of the Rydberg excitons to low densities of free carriers one can compare the
critical plasma density 𝜌eh necessary for the dissociation of a state with quantum number
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Figure 5.2 Band gap shift 𝛥eh as a function of plasma density at 𝑇sc = 1.35 K (blue
line) and at 𝑇sc = 10 K (red line). These temperatures represent the limits of equilibrium
and maximal out-of-equilibrium of electrons and holes in experiment. Horizontal lines in-
dicate the binding energies of excitons with principal quantum numbers 𝑛 = 25, 20, 15, 10.
The crossing points with the blue and red line give critical plasma densities 𝜌eh,c for the
dissociation of state 𝑛. From [Hec+18b].

𝑛 to the approximate volume of its wave function 𝑉𝑛 = 4
3𝜋𝑟3

𝑛

𝜌eh,c(𝑛) ⋅ 𝑉𝑛 ≈ 10−4𝑛2 . (5.13)

For the state 𝑛 = 10 this means that one electron-hole pair in a volume of one hundred times
its own wave function is already sufficient to destroy the exciton [Hec+18a]. According to
the Debye model, the screening becomes more inefficient at higher plasma temperatures
and higher plasma densities are necessary to achieve a comparable band gap shift. Note
that the more complex self-consistent model, given in Ref. [Sem+19], results in an opposite
temperature dependence, meaning that the band gap shift increases with increasing tem-
perature. A validation of this model is the subject of ongoing research (see discussion in
Sec. 5.4).

Nevertheless, using the experimental values for the laser-induced plasma densities 𝜌eh at
a given laser power Ppump, a model can be derived to convert the applied laser power into an
induced plasma density that will be shown in the next section. The model was introduced
mainly by Prof. Stolz and Dr. Semkat in [Hec+18b]. In this context, also an estimate of
the plasma temperature will be given, as it depends on the plasma density as well. Finally,
it will be possible to connect the band gap shift to the applied laser power.

5.2.1 Estimation of plasma density from laser power

At an excitation energy of 2.20 eV, the absorption spectrum mainly consists of phonon-
assisted absorption bands into yellow 𝑛𝑆 Ortho-excitons and the green 1𝑆 exciton, creating
a density 𝜌ex of excited 𝑆 states that might finally relax into the 1𝑆 Ortho-exciton via
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phonon scattering with a rate Γrel increasing its density 𝜌o. Further a conversion of Ortho-
into Para-excitons leads to a growing para exciton density 𝜌p. With rising densities of
Ortho- and Para-excitons two-body Auger processes become relevant, whereby two ground
state excitons collide and the energy of one exciton is transferred to the other, ionizing it and
creating energetically high-lying free electron and hole pairs of density 𝜌eh. Additionally, a
fraction of about 𝛾eh = 0.3 is absorbed directly by free electron-hole pairs. This fraction
can be estimated from a comparison between the height of continuum absorption and the
underlying phonon background. In turn, the plasma created may decay via trapping of
electrons and holes with rate Γeh or recombine to 1𝑆 excitons with a rate Γrc. All these
coupled processes are described by the following rate equations that were mainly developed
in refs. [Sch+12; Sto+12]. A relaxation into Rydberg states is neglected here, but will be
discussed in Sec. 6.5.1.

̇𝜌ex = (1 − 𝛾eh)𝐺(𝑃) − 𝜌ex(Γop + Γrel) , (5.14)

̇𝜌o = 3
4
Γrc𝜌2

eh + Γrel𝜌ex − 𝜌o(2𝐴oo𝜌o + 𝐴op𝜌p + Γo + Γop) , (5.15)

̇𝜌p = 1
4
Γrc𝜌2

eh + Γop(𝜌ex + 𝜌o) − 𝜌p(𝐴op𝜌o + 2𝐴pp𝜌p + Γp) , (5.16)

̇𝜌eh = 𝛾eh𝐺(𝑃) + 𝐴oo𝜌2
o + 𝐴op𝜌o𝜌p + 𝐴pp𝜌2

p − Γrc𝜌2
eh − Γeh𝜌eh . (5.17)

Here, 𝐴𝑖𝑗 (𝑖, 𝑗 = o, p) are the Auger rates for the different combinations of 1𝑆 Ortho- and
Para-excitons and Γo and Γp are the energy relaxation rates of the 1𝑆 Ortho- and Para-
excitons. The pump power Ppump of the circular laser spot with radius 𝑅spot at pump
energy 𝐸pump is included in 𝐺(Ppump) = 𝛼(𝐸pump)

𝜋𝑅2
spot𝐸pump

Ppump. In the experiment considered
here, the proportionality constant is 4 ⋅ 10−4 𝜇m−3𝜇W ns.
The following parameters are relevant for Auger scattering processes and were determined

experimentally in Refs. [Sch+12; Sto+12] to be

𝐴oo = 6.6 × 10−17 cm3

ns , 𝐴op = 𝐴oo
4

, 𝐴pp = 2 × 10−18 cm3

ns ,

Γo = 0.02 1
ns , Γop = 0.2 1

ns , Γp = 0.005 1
ns .

Further, the relaxation rate of the excited excitons into the ground state is given by Γrel =
0.06 1

ns . Unfortunately, the parameters such as the specific Auger-rates, but also 1𝑆 exciton
lifetimes can differ from sample to sample and are even stress dependent [Sno+14; Den+02].
One would rather have to evaluate these parameters for the particular sample on hand before
including them in the model [Nak+02].
Nevertheless, in the range of small applied pump powers up to roughly 1 mW Auger

processes can be neglected due to low densities of ground state excitons and the density of
free electron-hole pairs 𝜌eh is mostly given by their direct excitation and decay in Eq. (5.17).
Setting 𝐴𝑖𝑗 = 0 (𝑖, 𝑗 =o, p), the steady state of Eq. (5.17) ( ̇𝜌eh = 0) yields

𝜌eh(Ppump) = − Γeh
2Γrc

+ √( Γeh
2Γrc

)
2

+
𝛾eh𝐺(Ppump)

Γrc
. (5.18)

The resulting densities are shown in the next section in Fig. 5.5 (a) for the eventually
obtained values for Γeh and Γrc (see Sec. 5.2.3).
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5.2.2 Cooling of electrons and holes
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Figure 5.3 Effective temperatures for electrons (red line) and holes (blue line) as a
function of time. Excitation energy 𝐸pump = 2.20 eV, crystal temperature 𝑇Crystal=1.35 K.
Adapted from [Hec+18b].

As shown in Fig. 5.2, the screening depends not only on the plasma density but also on
its temperature 𝑇sc. To estimate a final temperature for the electron-hole plasma, cooling
mechanisms have to be considered, that act during the lifetime of electrons and holes. After
excitation at 2.20 eV electrons and holes are in a state with high kinetic energy and might
lose energy due to carrier-phonon- or carrier-carrier-scattering. Due to the low carrier
densities in the experiment, carrier-carrier scattering is neglected and only acoustic phonon
scattering is taken into account in the following. For both electrons or holes, separate
quasi-thermal Maxwell-Boltzmann distributions with effective temperatures 𝑇eff,𝑖, 𝑖 = 𝑒, ℎ
are assumed. The carrier temperature loss rates for acoustic phonon scattering at a crystal
temperature 𝑇Crystal are given by [Rid82]

𝑑𝑇eff,𝑖

𝑑𝑡
= 𝐶0,𝑖(𝑇 /𝑇eff,𝑖 − 1)𝑇 3/2

eff,𝑖, with 𝐶0,𝑖 = 8
3
√

𝜋
𝑘1/2

B
𝐷2

𝑖 (2𝑚𝑖)5/2

2𝜋𝜌Cu2Oℏ4 . (5.19)

Here, 𝐷𝑖 are the acoustic phonon deformation potentials for the conduction and valence
band, given by 𝐷c = 3.5 eV and 𝐷v = 1.8 eV in [Sto+18]. The parameter 𝜌Cu2O is the mass
density of Cu2O given by 𝜌Cu2O = 6.09 g/cm3 [Mad+98]. This yields a dependence on time
𝑡 for the effective carrier temperatures for species 𝑖 as

𝑇eff,𝑖(𝑡) = 𝑇Crystal [tanh(artanh√𝑇Crystal/𝑇0,𝑖 + √𝑇Crystal𝐶0,𝑖𝑡/2)]
−2

. (5.20)

Here, 𝑇0,𝑖 are the initial temperatures that are connected to the pump laser energy 𝐸pump
via

𝑇0,𝑖 = 2
3𝜎𝑖(𝐸pump − 𝐸g)/𝑘B , (5.21)

with 𝜎e = 𝑚h/(𝑚e + 𝑚h) and 𝜎h = 𝑚e/(𝑚e + 𝑚h). For a crystal temperature of 𝑇Crystal =
1.35 K and a laser light energy of 𝐸pump = 2.20 eV this yields the electron and hole cooling
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Figure 5.4 Final average temperatures of electrons (a) and holes (b) for CW excitation as
a function of the electron-hole plasma density and different sets of relaxation parameters.
The red curves are calculated with Γeh = 0.01/ns, the blue lines with Γeh = 0.1/ns. For
each value of Γeh, three values of Γrc are shown. Crystal temperature 𝑇Crystal=1.35 K. The
faster the decay the higher is the temperature of the remaining plasma and the screening
becomes weaker. Adapted from [Hec+18b].

curves shown in Fig. 5.3. The lighter holes start at higher temperatures and need more time
to cool down compared to the electrons. To account for the finite carrier lifetime, Eq. (5.17)
is solved for an excitation pulse with initial electron-hole density 𝜌eh,0 and normalized to a
time integral of 1. This leads to the following weighting function

𝑓(𝑡, Γeh, Γrc, 𝜌eh,0) = ΓehΓrc
(Γeh + Γrc𝜌eh,0)𝑒Γeh𝑡 − Γrc𝜌eh,0

𝜌eh

ln [Γeh+Γrc𝜌eh,0
Γeh

]
. (5.22)

Next, the temporal evolution of the carrier temperatures 𝑇eff,𝑖 is weighted with 𝑓(𝑡) to
describe the temperature contribution of the initially injected density 𝜌eh,0 to the total
temperature after a time 𝑡. In order to obtain the final average temperature for each species
in a CW excitation scheme as in the experiment, the integral over all these contributions is
taken

⟨𝑇 (Γeh, Γrc, 𝜌eh,0)⟩𝑖 = ∫
∞

0
𝑇eff,𝑖(𝑡)𝑓(𝑡, Γeh, Γrc, 𝜌eh,0)𝑑𝑡 . (5.23)

In the following, the brackets ⟨⟩ are left out for simplicity. Figure 5.4 shows average tem-
peratures obtained by Eq. (5.23) for different parameters Γrc and Γeh as a function of plasma
density 𝜌eh for electrons (a) and holes (b) separately. As expected, with a faster decay rate
of the injected carriers (higher values for Γeh, Γrc), the plasma temperature remains higher
as there is less time to cool down within the limited lifetime. Further, a larger amount of
hot carriers sums up to a higher final temperature as well, which renders the temperature
density-dependent. At low densities and for the decay rates in Fig. 5.4, the electrons even
nearly cool down to the crystal temperature, while the hole temperatures always remain
higher. Thus, the contributions of electrons and holes to the total screening temperature
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Figure 5.5 (a): Plasma density as a function of pump laser power. (b): Final plasma
temperatures for electrons 𝑇e and holes 𝑇h as well as the total screening temperature 𝑇sc
for CW excitation as functions of pump laser power. Both curves are calculated with the
relaxation parameters Γeh = 18−1/ns and Γrc = 1.15 𝜇m−3 obtained from fitting the band
gap shift, see text. Crystal temperature 𝑇Crystal=1.35 K. Adapted from [Hec+18b].

are different. Therefore the total screening temperature is given by

1/𝑇sc = (1/𝑇e + 1/𝑇h)/2 (5.24)

and the inverse screening length is given by

𝜅 = √2𝜌𝑒2/(𝜖0𝜖𝑠𝑘𝐵𝑇sc) . (5.25)

The carrier temperatures 𝑇e and 𝑇h as well as the total screening temperature 𝑇sc are
shown in Fig. 5.5 (b) as a function of laser power for the parameters Γeh = 18−1/ns and
Γrc = 1.15 𝜇m−3 (see Sec. 5.2.3). As the screening and with it the laser-induced band gap
shift 𝛥eh(𝜌eh(Ppump), 𝑇sc(𝜌eh(Ppump)) are stronger at low plasma temperatures (Fig. 5.2)
they are expected to be dominated by the electrons. Further, the effects weaken with
increasing laser power due to enhanced densities and temperatures.

5.2.3 Band gap shift and 𝑛max as a function of laser power

In order to reproduce the laser-induced band gap shift 𝛥eh shown as blue dots in Fig. 5.6,
we separate it from the inherent band gap shift 𝛥0 by 𝛥eh = √𝛥2 − 𝛥2

0 and compare
it with the applied laser power. With the model presented above we can now reproduce
the observed shift by adjusting the parameters to Γeh = 18−1ns and Γrc = 1.15 𝜇m−3/ns
(blue line in Fig. 5.6). The experimentally observed maximal quantum numbers 𝑛max are
shown in Fig. 5.6 as well (red circles) in dependence on the applied laser power along with
a comparison to the theoretical expectation after Eq. (5.12) (red bars). The upper abscissa
shows the corresponding plasma densities, obtained with the parameters mentioned before.
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Figure 5.6 Left ordinate: Highest observed quantum number as a function of pump laser
power (bottom abscissa) and corresponding laser-induced plasma density (top abscissa) as
observed in the experiment (dots) compared to the theoretical prediction (bars) following
Eq. (5.12). Right ordinate: Dependence of band gap shift on these parameters. Blue dots
show the experimental values and the blue line shows the theoretical dependence. Adapted
from [Hec+18b].

It should be noted that the values found for Γeh and Γrc depend strongly on several other
input parameters. For example, the exact amount of absorbed laser power should be taken
into account, including all reflections and light scattering at the sample surface and cryostat
windows (cf. Ch. 3). Further, Γeh and Γrc depend on the relaxation mechanisms considered in
the cooling model. Here, LO-phonon scattering is neglected in a first approach, but should
be taken into account in an extended model. This extension of the cooling mechanism is
still the subject of ongoing research. Finally, the rate model described above also includes
Auger processes that are neglected here due to the low densities of electron-hole pairs and
the corresponding density of 1𝑆 excitons. For a more accurate model, the Auger processes
could be taken into account even for low densities. However, as already mentioned above,
one would first have to evaluate the relevant Auger rates for the particular sample used
[Nak+02].
Whereas the integration of all these mechanisms to a full model that converts the absorbed

laser power into a plasma density is a subtle issue, the position of the band gap can also be

61



Chapter 5 Rydberg excitons in an ultralow-density plasma

read out directly from the spectrum. Thus, it is possible to decouple the band gap position
from the applied laser power. In the next section, the dependence of the oscillator strength
on band gap position will be deduced.

5.2.4 Oscillator strength
Besides the band gap shift and the reduction of maximal observable quantum number
𝑛max, the reduction of oscillator strength with increasing band gap shift is a remarkable
observation and shall be described in this section.

According to studies of atomic plasmas, not only the binding energy but also the wave
function of the perturbed states is changed by the Coulomb screening. As described in
[Pau+09], the low plasma densities allow one to use a variational ansatz to obtain the
modified wave functions as analytical solutions of the radial Schrödinger equation including
a screened Coulomb potential. One uses a variational adjustment of an effective Bohr radius
𝑎B

eff = 𝑥 ⋅ 𝑎B to minimize the binding energy of a state with quantum number 𝑛 in a plasma
𝐸b,sc

𝑛 . Adapting this idea, we find for the expectation value of the 𝑛𝑃 exciton energy in a
plasma:

⟨𝐸𝑃(𝑛)⟩ = 𝛥 + 𝑅𝑦
𝑛2 ⋅ ( 1

𝑥2 − 2
𝑥

1
(1 + 𝑛𝜉(𝛥)𝑥)2𝑛 2𝐹1)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐸b,sc

𝑛 (𝛥)

. (5.26)

Here, 𝜉(𝛥) = 𝜅𝑎B/2 = −4𝜋𝜖0𝜖𝑠𝑎B𝛥/2𝑒2 is a normalized inverse screening length and
2𝐹1(−1−𝑛, 2−𝑛, 1, (𝑛𝜉(𝛥)𝑥)2) is the Gaussian hypergeometric function. Note that 𝐸b,sc

𝑛 →
−𝑅𝑦/𝑛2 for 𝜉 → 0 and 𝐸b,sc

𝑛 → 0 for 𝜉 → ∞.
The second part of Eq. (5.26), 𝐸b,sc

𝑛 , is shown in Fig. 5.7 (a) as a function of effective
Bohr radius 𝑎B

eff and different plasma densities for 𝑛 = 16. For 𝜌eh = 0 one obtains the
unperturbed binding energies with the unchanged Bohr radii. With an increasing density
𝜌eh as well as increasing inverse screening length 𝜉 the position of the energy minimum and
𝑎B

eff increases. In other words 𝑎B
eff > 𝑎B and the wave function of the excitonic state grows

due to the screened Coulomb attraction. Figure 5.7 (b) shows the obtained effective Bohr
radii 𝑎B

eff for various 𝑛 as a function of both band gap shift 𝛥 and corresponding plasma
density 𝜌eh for 𝑇sc = 5 K.

However, the exciton energies observed in Fig. 5.1 do not shift at all regardless of the
band gap shift 𝛥 until the absorption lines completely vanish. To account for this fact an
effective quantum number 𝑛eff is introduced such that the binding energies of the perturbed
states stay equal to the unperturbed ones 1:

⟨𝐸𝑃(𝑛)⟩ = −𝑅𝑦
𝑛2 = 𝛥 + 𝑛2

𝑛2
eff

𝐸sc(𝛥, 𝑛)

⇔ 𝑛2
eff(𝛥, 𝑛) = −𝑛2𝐸sc(𝛥, 𝑛)

(𝛥 + 𝑅𝑦
𝑛2 )

. (5.27)

The resulting values for 𝑛eff are additionally shown in Fig. 5.7 (b) as a function of band gap
shift. For small band gap shifts 𝑛eff stays almost constant but increases rapidly when the
band gap crosses the exciton binding energy.

1The quantum defect 𝛿𝑛,𝑙 can be neglected for these high values of 𝑛
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Figure 5.7 (a) Binding energy of state 𝑛 = 16 in a plasma 𝐸b,sc
16 as a function of effective

Bohr radius for increasing plasma density 𝜌eh and 𝑇sc=5 K for state 𝑛 = 16. (b) Effective
principal quantum number 𝑛eff (full lines, left ordinate) and effective Bohr radius 𝑎B

eff
(dashed lines, right ordinate) as a function of band gap shift 𝛥 for 𝑛 = 11, 16, 25, 35.
The upper abscissa shows corresponding plasma density 𝜌eh at 𝑇sc = 5 K. Adapted from
[Hec+18b].

Finally, the values of 𝑎B
eff and 𝑛eff allow us to calculate the relative oscillator strength

for a particular state with quantum number 𝑛 as a function of the band gap shift 𝛥 (see
Eq. (2.34))

𝑓rel(𝛥, 𝑛) =
𝑛2

eff(𝛥, 𝑛) − 1
(𝑎B

eff(𝛥)/𝑎B)5 𝑛5
eff(𝛥, 𝑛)

. (5.28)

Figure 5.8 (a) shows a comparison of the experimental peak areas with the theoretical
prediction of Eq. (5.28), for the states 𝑛 = 13, 14, 15, 17 and 19. Starting at an initial band
gap shift 𝛥0 of about -150 𝜇eV at zero pump power, the observed decrease of peak area
follows nicely the predicted oscillator strength.
Going one step further, the influence of a remaining band gap shift or plasma density can

be described. Figure 5.8 (b) shows the relative oscillator strength for the states from 𝑛 = 10
up to 𝑛 = 30 for different band gap shifts in terms of an inherent shift 𝛥0 and corresponding
plasma density 𝜌0, calculated for a crystal temperature of 1.35 K. The calculated density is
used as an estimate for the density of charged impurities.
Without any band gap shift, i.e. ̃𝐸g = 𝐸g, the values follow the expected 𝑛−3 dependence.

Including only small shifts, i.e. small plasma densities, already leads to a strong drop of
oscillator strength for the highest 𝑛, well known from experiments (see [Kaz+14] or Ch. 2).
Thus, even if the band gap did not cross the binding energy yet, the oscillator strength can
drop about an order of magnitude making it harder to observe a resonance in experiment.
As another consequence, the wave functions of the states with highest 𝑛 are always modified
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Figure 5.8 (a) Comparison of measured peak area as a function of band gap shift with
theoretical prediction given by Eq. (5.28). The experimental values are scaled with a
constant factor to fit the theory curves at 𝛥0 = −150 𝜇eV. Adapted from [Hec+18b]. (b)
Relative oscillator strengths for resonances of 𝑛 = 10 up to 𝑛 = 30 for different values of an
inherent band gap shift 𝛥0 and corresponding plasma density 𝜌0 for a crystal temperature
of 1.35 K. Already low plasma densities 𝜌0 lead to a drop of oscillator strength for the
highest 𝑛.

by the influence of this inherent plasma density.
Following the argumentation given above, the possibility to observe higher exciton states

is directly connected to the inherent band gap shift 𝛥0 present at zero pump power. This
shift is assumed to be induced by uncompensated impurities in the sample and will differ
from sample to sample. For the measurements described in this chapter, the value of
𝛥0 = −150 𝜇eV corresponds to an estimated impurity density of about 𝜌0 = 0.015 𝜇m−3,
which is in line with the microscopic model in Ref. [Krü+20]. As an example, to observe an
exciton with principal quantum number of 𝑛 = 30, a band gap shift below 100 𝜇eV would
be necessary, corresponding to an impurity concentration even below 5 ⋅ 10−3 𝜇m−3.

Finally, the impurity density limiting the highest observable 𝑛max is expected to differ
between different positions of the same sample. Figure 5.9 shows some absorption spectra
measured at the same temperature of 800 mK and an excitation power of about 1 𝜇W, but
different sample positions. At exactly the same excitation conditions, the position of the
shifted band gap ̃𝐸g = 𝐸g + 𝛥0 and with it the highest observable exciton resonance 𝑛max
depends on the exact sample position. Additionally, the oscillator strength of all shown
resonances is lowered as the band gap is shifted to lower energies, in accordance with this
model.
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Figure 5.9 Comparison of absorption spectra recorded at the same temperature and
excitation power but different sample positions. Depending on the exact condition of the
illuminated area, the band gap ̃𝐸g = 𝐸g + 𝛥0 is shifted to lower energies followed by
smaller peak areas of the highest observable resonances. Arrows indicate the band gap

̃𝐸g. Spectra are shifted for clarity. Adapted from [Hec+20].
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5.3 Critical dependence of 𝑛max on external parameters

In the previous section, the impact of an electron-hole plasma on Rydberg excitons was
described. The cloud of free carriers leads to a gradual band gap renormalization and
screens the Coulomb potential which modifies the exciton wave functions and leads to a
disappearance of exciton lines with increasing electron-hole density. But even at zero pump
power a band gap shift 𝛥0 can be observed that is attributed to uncompensated impurities
in the sample, which limits the observable Rydberg exciton series.

However, one can think about further external parameters that will limit the possibility to
observe higher Rydberg states. In this context, the dependence of the absorption spectrum
on both the probe laser’s excitation power and the crystal temperature were investigated
in detail and the results are given in this section. Again, all shown spectra are measured at
sample 𝐻7.

5.3.1 Excitation power

As already reported in [Kaz+14], the existence and observability of Rydberg exciton res-
onances in the absorption spectrum depends strongly on the applied excitation power. In
contrast to the experiment described in the section before, the resonances can be bleached
out with a single laser and below band gap excitation as well. In this case, the exciton
transition is driven resonantly by one laser, increasing the exciton density with rising laser
power. The disappearance of exciton lines can be attributed to the Rydberg blockade
mechanism, where the excitation of two or more excitons within a given volume becomes
impossible as their interaction shifts the excitation energy out of the laser resonance (see
Sec. 6).

However, also in experiments using a single laser, an unavoidable amount of free electron-
hole pairs might be excited, leading to a band gap renormalization. The created excitons
may relax towards lower-lying states and eventually form 1𝑆 excitons that in turn decay
via the Auger mechanism into pairs of free electrons and holes. Additionally, the direct
excitation of 1𝑆 excitons via phonon-assisted absorption is possible below the band gap
(see Sec. 5.2.1). Next, even in the narrow energy range below the band gap, the direct
excitation of free electron-hole pairs might be possible, due to absorption into the Urbach
tail, which describes an exponentially smeared out band gap (cf. Sec. 2.5 or Fig. 5.1).
Further, free electron-hole pairs may relax into Rydberg states of high principal quantum
numbers, which in turn leads to an enhanced Rydberg blockade. In general, the exact
density of free electron-hole pairs created by below band gap excitation remains unknown as
all these processes take place independently and is still the subject of current investigations.

However, regardless of the exact blockade mechanism driven by below band gap excita-
tion, the dependence of the absorption spectrum on laser power can be observed experi-
mentally. While in [Kaz+14] studies were performed with a focus on the disappearance of
states with increasing power, here, the low-power limit will be investigated. Figure 5.10
shows absorption spectra for various excitation powers from 25 𝜇W down to 25 nW at a
temperature of 830 mK. The lowest resonance shown belongs to the 𝑛 = 22 exciton. With
decreasing power starting from 25 𝜇W, the oscillator strength and the total amount of vis-
ible resonances increases. Below 2.5 𝜇W, 𝑛 = 26 and 𝑛 = 27 become visible. Lowering the
power further leads to a reduced signal-to-noise ratio which renders the detection of higher
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Figure 5.10 Absorption spectra for the highest observable excitons starting from 𝑛 = 22
for different excitation powers of the probe laser. Starting with 𝑛 = 22 as the only visible
state at 12.5 𝜇W, the number of observable states rises with falling laser power from
bottom to top. Below 2.5 𝜇W, excitons up to 𝑛 = 27 are observable, whereas at 25 nW
the signal-to-noise ratio already becomes too bad. The spectra are measured at the best
sample position found and at a temperature of 𝑇 = 830 mK. The spectra are corrected by
subtracting the background and stacked vertically for better comparison. Adapted from
[Jan17].

lines more complicated. The lowest applied power was 500 pW, as measured in front of the
cryostat (cf. Ch. 3), which corresponds roughly to 250 pW of absorbed power at the sam-
ple (taking reflections at 5 cryostat windows into account for this particular case). Even
replacing the detector by an avalanche photodiode (Hamamatsu C-5331) or a low-power
photoreciever, able to detect optical powers below 20 pW (Femto FWPR-20 SI), did not
improve the signal in terms of both the maximal observable quantum number and signal-
to-noise ratio. Thus, a laser power between 100 nW and 1 𝜇W seems to be well suited to
avoid a major impact on the Rydberg exciton series by the possible blockade mechanisms
mentioned above and provides a reasonable signal quality at the same time.

5.3.2 Temperature

The highest Rydberg excitons with principal quantum numbers higher than 𝑛 = 20 have
binding energies below 200 𝜇eV. For the state 𝑛 = 25 one finds a binding energy of about
𝐸b

25𝑃 = 140 𝜇eV. At a typical measurement temperature in a liquid helium bath of 1.35 K,
the thermal energy already amounts to 𝑘𝐵𝑇 ≈ 115 𝜇eV which is comparable to the binding
energy of that state. Thus, for the highest excitons, thermal dissociation is another potential
mechanism that might limit the observability of higher states, as all excitons with a binding
energy in the range of the thermal energy are expected to dissociate. Thermal dissociation
can result in linewidth broadening and eventually in an overlapping of resonance curves
due to their small spectral separation. In turn, an increase of temperature should further
reduce the number of observable exciton lines as the number of thermal phonons increases
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Figure 5.11 (a) Absorption spectra at various temperatures from 1.3 K up to 25 K. With
increasing temperature the highest observable 𝑛max vanish and resonance energies are
shifted to lower energies. The numbers give 𝑛max, the arrows indicate the position of the
band gap ̃𝐸g. The band gap shifts are stronger than those of the exciton energies. Spectra
are shifted for clarity. Adapted from [Hec+18a]. (b) Evaluated energies of excitons and
band gap from panel (a), given in terms of the energy difference to the energy of the 9𝑃
state. While the energy difference between excitonic lines stays constant with increasing
temperature, the band gap shifts about 200 𝜇eV to lower energies.

and dissociation becomes more probable. In this context, a temperature series of absorption
spectra in the range between 1.3 K to 25 K has been measured and is shown in Fig. 5.11 (a).
The measurements are performed with a laser power of 1 𝜇W. The spectra indeed show
several changes with increasing temperature.

As expected, the highest observable exciton number 𝑛max decreases with temperature.
Starting from 𝑛max = 23 at 1.35 K, only states up to 𝑛max = 16 can be observed at 25 K.
While the highest lines vanish completely, the oscillator strengths of lower lines start to drop
gradually long before they completely vanish. Furthermore, the measurable band gap ̃𝐸g is
shifted to lower energies with increasing temperature (indicated by arrows). This is in line
with the known temperature dependence of the nominal band gap 𝐸g of a semiconductor,
that is well described in the literature (see e.g. [Gru06]). Similar to the band gap, the exciton
lines are also shifted to lower energies, while their spectral separation among each other
stays constant within 𝜇eV-resolution. Interestingly, the band gap shift with temperature is
stronger than the exciton line shift, i.e. the energy difference ̃𝐸g − 𝐸𝑋 = 𝑅𝑦

𝑛2 + 𝛥 becomes
smaller. Up to 25 K the band gap shift to lower energies amounts about 220 𝜇eV more
than the shift of exciton lines. The energies of the exciton lines from 𝑛 = 14 to 𝑛 = 20 and
of the band gap as a function of temperature, both given in terms of the energy difference
to the energy of the 9𝑃 state, are shown in Fig. 5.11 (b). From the constant distance
between excitonic lines, a temperature-dependent change of binding energies 𝐸b

𝑛 = −𝑅𝑦
𝑛2

can be excluded. Therefore, a temperature-dependent change of the band gap shift 𝛥
seems probable.
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According to Sec. 5.2, a possible explanation for the temperature dependence of 𝛥 can
be given by an electron-hole plasma, the density of which increases with rising temperature.
Two possible mechanisms for the increase of plasma density with temperature are discussed
in the following. One of them is the thermal dissociation of excitons into the continuum,
which would increase the density of unbound electrons and holes and result in an additional
band gap shift 𝛥. In turn, due to the reduced energy difference to the continuum, phonons
of lower energy are necessary to dissociate an exciton while at the same time, assuming a
Bose-Einstein distribution at higher temperatures, the amount of phonons with appropriate
energy rises [Hec+18a]. In the temperature range up to 25 K, thermal dissociation might
affect most of the excitons visible in Fig. 5.11, since already at 10 K the thermal energy is as
large as the binding energy of 𝑛 = 10. While an absorption line in this spectral range is still
visible, it can lose oscillator strength and increase in linewidth due to dissociation. Indeed,
a broadening of lines can be observed with rising temperature, that could be ascribed
to additional phonon interaction. As already extremely low plasma densities of about
0.01 𝜇m−3 are sufficient to shift the band gap across the resonance energies of the highest
𝑛 (Sec. 5.2), the thermal dissociation of excitons seems to be a plausible explanation for
the observed temperature dependence of the band gap shift that is stronger than the shift
of exciton lines. However, in [Sto+18] the contribution of thermal dissociation to the total
linewidth is calculated and shown to be small for temperatures up to 20 K. For lower
temperatures, e.g. below 1 K, it is even said to be negligible.
Besides thermal ionization of excitons, the increased amount of unbound carriers could

stem from thermal ionization of shallow impurities or defects. This is in line with the
behavior of the intermediate peaks between two 𝑃 lines that are still observable with rising
temperatures up to 25 K, which indicates that scattering and decoherence are still low, as
can be seen in the plasma-screening experiments as well (Sec. 5.2).
Finally, the exact mechanism that leads to a stronger shift of the band gap compared to

the exciton lines might consist of a complex interdependence of the phenomena mentioned
above and is still the subject of ongoing research. It should be noted, that on the one
hand, within the Debye model, a higher temperature would lead to less effective screening
(𝛥 ∝ 𝜌1/2

eh 𝑇 −1/2, see Eq. (5.1)), that would have to be overcompensated by the increasing
plasma density to result in a temperature-dependent band gap shift to lower energies. On
the other hand, the recent calculations in Ref. [Sem+19] predict the opposite trend, i.e. a
stronger band gap shift with increasing temperature, in contrast to the Debye model. To
obtain a deeper understanding of the underlying mechanisms, first of all a further validation
of both models is necessary. Due to the different temperature dependence of the band gap
shift in both models, experiments where a pump laser excites resonantly an electron-hole
plasma at different temperatures are promising candidates to verify one of the models and
are the subject of future studies (see discussion in Sec. 5.4).

Regardless of the exact mechanism that leads to the band gap shift and vanishing of
exciton lines, we can conclude that a higher temperature eventually limits the observation
of highly excited Rydberg states. In this context, a lowering of temperature below 1 K seems
to be a reasonable experimental approach to study limitations of the observable Rydberg
exciton series at ultralow temperatures. Thermal dissociation of excitons will be reduced,
as the thermal energy will be as low as possible and potential thermal ionization of defects
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Figure 5.12 (a) Comparison of absorption spectra measured at 1.35 K and 0.76 K. Below
1 K, the absorption coefficient rises for all 𝑛. For states with 𝑛 > 20, this results in an
important improvement for their visibility. (b) Temperature series from 720 mK down to
337 mK with a low excitation power of 200 nW. Lowering the temperature below 800 mK
does not enhance the absorption for states up to 𝑛 = 27, while a tiny absorption grows
for 𝑛 = 28. Spectra are recorded at different sample positions and averaged over 10 single
measurements. Vertical lines indicate expected resonance energies (dashed: 𝑛 = 29),
following Eq. (2.24) with 𝑅𝑦 = 90 meV and𝛿𝑛,𝑃 = 0.08. (c) The best visibility of 𝑛 = 28
is obtained at 110 mK and a power of 1 𝜇W (black), averaging 8 single measurements.
At lowest temperature of 50 mK and 100 nW excitation power (red), the absorption of
𝑛 = 28 does not improve compared to the black curve. This spectrum is averaged over 12
single measurements and additionally smoothed (grey line). In all panels the background
is subtracted for better comparison. Adapted from [Hec+20].

is expected to be reduced as well. On the other hand, following the Debye model discussed
before in Sec. 5.2, screening becomes more efficient at lower temperatures (𝛥 ∝ 𝑇 −1/2),
which in turn might result in a comparable screening strength already for a smaller amount
of free charges.

As reported in [Hec+20; Jan17], we performed absorption measurements in a 3He-4He
dilution cryostat at temperatures below 1 K. The lowest temperature achieved was 47 mK.
However, already at a temperature of 760 mK, certain changes in the spectra compared to
1.35 K can be observed, as shown in Fig. 5.12 (a). With falling temperature, the oscillator
strengths increase while the linewidths become smaller, indicating a reduction of possible
scattering effects and an increase of lifetimes. The changes are already visible for excitons
with intermediate principal quantum numbers around 𝑛 = 10, while these effects are more
significant for states with 𝑛 > 20. At temperatures of 1.35 K, these states can hardly
be observed, but at 760 mK, they show pronounced lines up to 𝑛 = 27. According to the
previous discussions, this could again be related to a shift of the band gap to higher energies,
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either by reduced thermal dissociation or by freezing of thermally ionized impurities.
Lowering the temperature further, from 720 mK to 337 mK, does not improve the spectra

significantly as shown in Fig. 5.12 (b). Here, low powers of 200 nW were applied, and for
450 mK and 337 mK indeed one additional tiny feature on the high energy side of 𝑛 = 27 is
observed that can be assigned to the state 𝑛 = 28. For all other states no further significant
changes are seen. The best result for 𝑛 = 28 is shown in Fig. 5.12 (c) for 110 mK. Notably,
the 𝑛 = 28 state is best visible with a higher power than in Fig. 5.12 (b). Thus, even
with a slightly higher power one does not destroy the highest states. This is confirmed by
the lower spectrum in Fig. 5.12 (c): This spectrum is recorded at both lowest temperature
of 50 mK and lowest power of 100 nW, but shows, contrary to the expectations, an even
smaller feature for 𝑛 = 28. It is notable that, following the exciton lines to temperatures
below 1.35 K, no further shift in energy is observable within 𝜇eV-resolution.Also, no further
linewidth narrowing can be observed.
Finally, we conclude that temperatures below 1 K indeed improve the quality of absorp-

tion spectra. Especially for states with 𝑛 > 20, a significant improvement is seen in terms
of a higher absorption coefficient. Already temperatures around 800 mK are sufficient to
observe a state with 𝑛 = 27 (Fig. 5.10, and Fig. 5.12 (b)). The observation of an absorption
feature assigned to 𝑛 = 28 is possible at temperatures of 450 mK and below, while the best
signal-to-noise ratio is obtained with a power of 1 𝜇W. The thermal energy at 100 mK is
𝑘𝐵𝑇 = 8.6 𝜇eV, comparable to the binding energy of the state 𝑛 = 100, indicating that the
observed limit is not given by thermal dissociation.
The spectra shown in panels (b) and (c) were recorded at slightly different sample posi-

tions in order to find the best sample position regarding the highest observable quantum
number 𝑛max. Hence, within an appropriate parameter space of excitation powers between
0.1 and 1 𝜇W and a temperature below 800 mK, the final limiting factor for the highest
observable quantum number 𝑛max is given by the constitution of the sample itself in terms
of the inherent band gap shift 𝛥0. This shift is at most 110 𝜇eV, if the 𝑛 = 28 state is
visible.
Remarkably, the intermediate peaks for the highest 𝑛 are almost of the same magnitude

as the corresponding exciton peaks. They are clearly shifted towards the lower-lying exciton
state, which is in line with the description in [Grü+16] where this peak is expected to be
shifted to the state with higher oscillator strength. However, as the oscillator strengths of
the corresponding 𝑃 states drop strongly with 𝑛, one would expect these intermediate peaks
to decrease, too, whereas they rather seem to shrink less. Further, one would not expect
to see this feature on the high energy side of 𝑛 = 28, as there is no transition to a possible
state with 𝑛 = 29. On a closer look, especially the peak of 𝑛 = 28 seems to be split. As
calculated in [Sto+18], a polariton splitting due to an anticrossing of photon and exciton
dispersions is expected to occur for states with 𝑛 > 28. However, the splitting is predicted
to be very small (≈ 10 neV). It is assumed to occur at principal quantum numbers 𝑛 > 28,
as the radiative decay starts to dominate the linewidth. Since the experimental linewidths
for high 𝑛 are broader than predicted by the model, such a polariton splitting might occur
at even higher 𝑛 in the experiment and cannot explain the observed splitting. In conclusion,
the exact origin of the size of intermediate features compared to the adjacent 𝑃 states at
these high quantum numbers remains unclear and is the subject of ongoing research.
The spectra at 760 mK and 110 mK are evaluated by the fitting routine described in

Appendix A.3 to reassess the behavior of linewidths and oscillator strengths as a function of
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𝑛, known from [Kaz+14], but now for states up to 𝑛 = 28. The results are shown in Fig. 5.13
in comparison with the values from Fig. 2.4 in Sec. 2.5 at 1.35 K (black). For 760 mK the
fits are evaluated up to 𝑛 = 25. States with even higher 𝑛 have an insufficient signal-to-
noise ratio to ensure meaningful fits. As no further change in the spectra can be observed
with falling temperature in Figs. 5.12 (b) and (c), the states from 𝑛 = 25 up to 𝑛 = 28 are
evaluated at 110 mK and shown in the same panel. Due to the peaks’ low visibility, error
bars are given for the states with 𝑛 ≥ 20, which are estimated by the difference between
the results of a fit with a single peak and with three adjacent peaks simultaneously, as
described in Appendix A.3. As mentioned above, the oscillator strengths slightly increase
for intermediate 𝑛 up to 𝑛 = 16, but show a more significant change for higher 𝑛, which can
be seen in Fig. 5.13 (a). Although the general trend of a stronger drop in oscillator strength
compared to the expected values following an 𝑛−3 dependence (black line) is confirmed,
the oscillator strength of 𝑛 = 22 grows about one order of magnitude at mK-temperatures
compared to 1.35 K. A similar result is obtained for the linewidths (Fig. 5.13 (b)). At
intermediate 𝑛, they narrow slightly at lower temperatures, while the known deviation
from the expected 𝑛−3-scaling is preserved, even at the lowest temperatures. The expected
scaling is shown by the black solid line. The additional broadening of these lines complicates
their observation additionally, as their spectral shapes smear out and overlap due to their
close spectral separation. The lowest linewidth is about 2.5 𝜇eV for 𝑛 = 28 at 110 mK
corresponding to an estimated lifetime of 𝜏 ≈ ℎ

𝛤𝑛
= 1.6 ns. Still, the linewidth is 2.5 times

larger than the theoretically predicted value. For the distance between electron and hole
one finds a radius of 𝑟28𝑃 ≈ 1.3 𝜇m (Eq. (2.17)). The lower temperatures improve the
observability for the states 𝑛 = 20 up to 𝑛 = 26 while even higher ones are still hard to
study due to their small oscillator strength that is still about 3 orders of magnitude below
the expected value following an 𝑛−3-power law (solid black line).

5.4 Discussion

The results presented in this chapter are based on the Debye model. In a simple first-
order approximation, the measured band gap shift 𝛥 and the screening of the Coulomb
potential cancel out each other (Eq. (5.9)). This is in agreement with the observations in
the experiment, where the exciton lines do not shift at all (Fig. 5.1). However, recent more
complex numerical calculations in Ref. [Sem+19] predict strong line shifts for a particular
state close to the onset of the Mott transition within the Debye model. For instance, values
about 300 𝜇eV for the state 𝑛 = 14 are predicted, in contradiction to the experiments
described here. In the same work, a more complex many-body approach for the calculation
of the influence of the plasma on excitons is presented, that predicts, in contrast to the Debye
model, only small exciton line shifts close to the Mott transition, which are in line with recent
measurements that are extended to lower 𝑛 and reveal small line shifts. Their evaluation is
the subject of ongoing research. Remarkably, the recent model also predicts the opposite
temperature dependence compared to the Debye model. Whereas the Debye model predicts
a band gap shift according to 𝛥 ∝ 𝜌1/2

eh 𝑇 −1/2 that becomes weaker at higher temperatures,
the newer model predicts a shift given by 𝛥 ∝ 𝜌1/2

eh 𝑇 1/4. Therefore, measurements with
increasing plasma density, in analogy to the one presented in the first part of this chapter
(Sec. 5.2), but at different crystal temperatures can help to get a better understanding of
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Figure 5.13 (a) Normalized oscillator strengths 𝑓𝑛/𝑓5 of 𝑛 = 8 to 𝑛 = 28 from spectra
at 760 mK (red) and 110 mK (brown). The values for 1.35 K are shown for comparison.
Error bars are given for 𝑛 ≥ 20, see text for details. Below 1 K, the oscillator strength
increases most significantly for states above 𝑛 = 20. The general trend with a strong drop
in oscillator strength is confirmed up to 𝑛 = 28. (b) The same as in panel (a) but for the
linewidths. Black lines indicate the expected scaling behavior. Adapted from [Hec+20].

the underlying mechanisms and to identify one of the models as the correct one.
Further, the model discussed in this chapter allows for a phenomenological description

of the exciton oscillator strength as a function of band gap shift 𝛥 by introducing effective
Bohr radii 𝑎B

eff and effective quantum numbers 𝑛eff. In another recent work, Ref. [Sem+], the
influence of an electron-hole plasma on the Rydberg exciton oscillator strength is calculated
by full diagonalisation of the plasma Hamiltonian. Remarkably, it shows that the presence
of an electron-hole plasma cannot cause the observed changes of the oscillator strength. The
changes predicted are only on the order of 1 % of the unperturbed oscillator strength. Thus,
the observed reduction of oscillator strength in the experiment might stem from additional
interaction mechanisms between the excitons, see Ch. 6.
Hence, while the oscillator strength can be described phenomenologically as a function

of band gap shift within the model described here, the picture of the underlying physical
mechanisms is still incomplete and further investigations are necessary.

5.5 Conclusions

In this chapter, the influence of a low-density electron-hole plasma and external experi-
mental parameters such as laser power and temperature on the Rydberg exciton series was
studied.
First, changes in the absorption spectra were reported when an electron-hole plasma is

injected by an external pump laser via above band gap excitation. The plasma leads to
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a renormalization of the band gap via correlation effects such as a self-energy correction
and to a screening of the Coulomb potential. Within a model based on the classical Debye
description the observed effects could be described in good agreement with experimental
data. The observed band gap shifts 𝛥 were found to stem from very low plasma densities
and the reduction of oscillator strength could be reproduced quantitatively as a function
of a shifted band gap position. The Rydberg excitons are found to be extremely sensitive
to low carrier densities as the highest states already vanish at plasma densities as small as
0.01 𝜇m−3.

Moreover, this finding also has consequences for below band gap excitation with a single
laser source, where a certain plasma density might be created, as discussed, either via Auger
decay of ground state excitons or by direct excitation close to the band gap. Thus, even
with below band gap excitation one will shift the band gap to lower energies. However, also
deviations from this model are found in both excitation scenarios, that are discussed later
in Sec. 6.5.

Second, even without external laser excitation the band gap is found to be shifted below
the nominal gap 𝐸g by an amount 𝛥0, which is limiting the observation of higher Rydberg
excitons. In this case, the band gap is assumed to be reduced by a density of charged
impurities in the crystal in agreement with Ref. [Krü+20].

In this context, the maximal observable quantum number 𝑛max was investigated experi-
mentally in dependence on the applied laser power and the crystal temperature. Possible
blockade mechanisms such as the excitation-power dependent Rydberg blockade on the
one hand and the plasma screening on the other hand but also the thermal dissociation of
Rydberg states were discussed as limiting factors. Laser powers down to several nW and
temperatures as low as 50 mK were applied to minimize the influence of these effects. The
highest quantum number that could be observed is 𝑛 = 28. The best result was obtained
with a power of 1 𝜇W and a temperature of 110 mK. However, the experimental parameter
space for this observation was found to be quite large, as a feature for 𝑛 = 28 can be already
identified at temperatures around 450 mK. Lowering the laser power below 1 𝜇W did not
further improve the result.

In conclusion, the inherent band gap shift 𝛥0 was found to be the final limiting factor
for the principal quantum number of the highest observable Rydberg exciton state. As a
consequence, in order to detect higher states one needs even purer samples with an inherent
band gap shift below 𝛥0 = 110 𝜇eV, corresponding to an estimated impurity density even
below 0.01 𝜇m−3.
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Chapter 6

Investigation of interactions between
Rydberg excitons

In this chapter, interactions between Rydberg excitons are investigated. In analogy to highly
excited Rydberg atoms, Rydberg excitons reveal giant dipole moments growing with 𝑛2

and are therefore promising candidates to exhibit strong dipole-dipole interactions among
each other. The interaction energy can become large enough to prevent the excitation
of a Rydberg state in the surrounding of an existing one, since the excitation energy of
the pair state is shifted out of resonance by the dipole-dipole interaction energy. This
is called the Rydberg blockade mechanism [Gal+08]. In the first section of this chapter,
Sec. 6.1, the dipole-dipole interaction is introduced theoretically and the concept of Rydberg
blockade is explained. First indications of such strong interactions were already reported in
1981 in atomic beam experiments in Ref. [Rai+81] and gained renewed attention since the
blockade mechanism was proposed theoretically as a promising candidate for the realization
of quantum logical gates in Refs. [Jak+00; Luk+01; Saf+05]. Not only its importance in the
field of quantum information processing, but also in quantum optics [Pri+12] and many-
body physics [Bro+20] has triggered a lot of theoretical and experimental effort [Saf+10;
Bro+16], so that today the observation of strong interactions between single atoms in a
controlled environment is possible [Urb+09].
Along with the discovery of Rydberg excitons in 2014, indications of the excitonic Rydberg

blockade were reported in Ref. [Kaz+14]. The focus laid on interactions of Rydberg states
with the same principal quantum number 𝑛, which is called the symmetric blockade. It
was observed in an experiment employing a single laser, that an increase in excitation
power led to a bleaching of absorption lines, similar to early reports from experiments with
atoms [Sin+04; Sin+05]. The corresponding blockade efficiency was shown to increase by
about three orders of magnitude for excitons with principal quantum numbers from 𝑛 = 12
to 𝑛 = 24, following an 𝑛10-scaling law. However, the determination of the exact underlying
interaction mechanism was not possible as both most reasonable candidates - a short-range
Förster-type or long-range van der Waals-type mechanism - would result in such a scaling,
as will be shown in Sec. 6.1 as well.
Similar to the symmetric case, the excitation of Rydberg states with principal quantum

numbers 𝑛 can be suppressed by the presence of states with different quantum numbers
𝑛′ ≠ 𝑛. This is described by the asymmetric Rydberg blockade. In this chapter, this type
of blockade is investigated. Therefore, data obtained in a two-beam pump-probe setup is
presented and analyzed. Clear spectral signatures of a van der Waals-type interaction are
found that exclude the Förster-type interaction as the underlying interaction mechanism.
Sections 6.2 and 6.3 give an explanation of the experimental setting and general observa-
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Chapter 6 Investigation of interactions between Rydberg excitons

tions. In Sec. 6.4, the focus lies on measurements, in which the Rydberg state 𝑛′ = 16 is
resonantly excited and the response of other states is investigated in detail. The results
are compared with a theoretical model developed by Valentin Walther from the Institute
for Theoretical Atomic Molecular and Optical Physics at Harvard University and Thomas
Pohl from the Department of Physics and Astronomy at Aarhus University. The model is
explained in Sections 6.4.1 and 6.4.2. It is found to explain most of the observed effects
by taking correlations between excitons into account, whereas a mean field model fails to
explain the effects. This investigation is part of a forthcoming joint publication [Hec+].

In Sec. 6.5, the same analysis is extended to the plasma-scenario as reported in Ch. 5,
where the pump laser energy is placed far above the band gap to create mainly an electron-
hole plasma. Interestingly, observations are reported, that are in contradiction with the
plasma model. A possible relaxation of electron-hole pairs into Rydberg states is briefly
discussed on the basis of photoluminescence spectroscopy.

This is followed by Sec. 6.6, where the results of measurements are presented, in which
the pump laser energy is set to the resonance energies of states with principal quantum
numbers 𝑛′ that are different than 𝑛′ = 16, namely to 𝑛′ = 12, 10 and the 1𝑆 Ortho-
exciton. Although the observations still show an agreement with the model prediction for
𝑛′ = 12, deviations for lower 𝑛′ are observed, where the data does not agree with the model
prediction and hints towards different and so far unknown interaction mechanisms.

Finally, in Sec. 6.7, an effect is described, that is visible at low pump powers in many
of the pump-scenarios mentioned above. Initially, the datasets show a nonlinear increase
of absorption which is neglected so far in the discussions before. In that section, the
dependence on pump energy of this effect is determined from experiments in which the
pump laser’s energy is scanned and an explanation is presented based on recent calculations
by Krüger et al., given in Ref. [Krü+20].

Preliminary studies of the shown experiments were performed in the context of Marcel
Freitag’s and Felix Föst’s master theses (Refs. [Fre16] and [Fös18]) as well as the bachelor
thesis of Steffen Schröder (Ref. [Sch18]).

6.1 Dipole-dipole interaction
In this section, the dipole-dipole interaction of two excitons with principal quantum numbers
𝑛 and 𝑛′ is described, following mainly Refs. [Bro+16] and [Saf+10]. The excitons are
assumed to be separated by a distance 𝑅 = |R| = R − R′, where R (R′) is the center of
mass of the exciton with principal quantum number 𝑛 (𝑛′). The dipole-dipole interaction
potential is then given by

𝑉dd (𝑅) = 1
4𝜋𝜖0𝜖s

d𝑛d𝑛′ − 3 (d𝑛R̂) (d𝑛′R̂)

𝑅3 , (6.1)

with R̂ = R/𝑅. The electric dipole moments of the two excitons with quantum numbers
𝑛 and 𝑛′ are given by d𝑛 and d𝑛′ , with 𝑑𝑛 = |d𝑛|. Without interaction, the excitons are
described by a pair state, denoted as |𝑛, 𝑛′⟩, with unperturbed energy 𝐸𝑛,𝑛′ = 𝐸𝑛 + 𝐸𝑛′ .

The interaction introduces a coupling to other pair states |𝑘, 𝑘′⟩, with principal quantum
numbers 𝑘 and 𝑘′ and energy 𝐸𝑘,𝑘′ . Note that due to the odd parity of the dipole operator,
these are states with opposite parity, e.g. an odd difference in angular momentum quantum
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number 𝑙 (cf. Sec. 4.1). For simplicity, the angular momentum quantum numbers are not
explicitly mentioned in the following. If the pair state energies are non-degenerate, the
energy correction of the pair state |𝑛, 𝑛′⟩ is given by second-order perturbation theory and
reads

𝛥𝐸vdW = ∑
𝑘,𝑘′

| ⟨𝑛, 𝑛′ | 𝑉dd | 𝑘, 𝑘′⟩ |2

𝐸𝑛,𝑛′ − 𝐸𝑘,𝑘′
. (6.2)

The denominator contains the energy difference between the energies of the involved pair
states, that is called the Förster defect. Theoretically, the sum includes all possible pair
states |𝑘, 𝑘′⟩ that are dipole coupled to |𝑛, 𝑛′⟩. Due to the dependence on 𝑉 2

dd, this shift
scales as 1/𝑅6 and can be identified with the van der Waals interaction. For the expansion
coefficient 𝐶6(𝑛, 𝑛′) one finds ([Mar+99; Wal+18b])

𝐶6(𝑛, 𝑛′) ∝
𝑑2

𝑛,𝑘𝑑2
𝑛′𝑘′

𝛥𝑛,𝑘 + 𝛥𝑛′,𝑘′
, (6.3)

where 𝛥𝑛,𝑘 and 𝛥𝑛′,𝑘′ are the energy separations between the corresponding coupled
states and scale as 𝛥𝑛,𝑘 ∝ 𝑛−3 (cf. Sec 4.1.1). The numerator is dominated by the
dipole matrix elements of states with 𝑘 ≈ 𝑛 (𝑘′ ≈ 𝑛′) that scale as ⟨𝑛 ∣ d𝑛,𝑘 ∣ 𝑘⟩ ∝ 𝑛2

(⟨𝑛′ ∣ d𝑛′,𝑘′ ∣ 𝑘′⟩ ∝ 𝑛′2)1. With these scalings, one obtains

𝐶6(𝑛, 𝑛′) ∝ {
𝑛7(𝑛′)4 for 𝑛 ≪ 𝑛′

𝑛4(𝑛′)7 for 𝑛 ≫ 𝑛′ . (6.4)

For 𝑛 ≪ 𝑛′, the denominator is dominated by the first term, 𝛥𝑛,𝑘 ∝ 𝑛−3, whereas for
𝑛 ≫ 𝑛′ the denominator is dominated by 𝛥𝑛′,𝑘′ . In both cases, the interaction strength
increases strongly with the principal quantum number 𝑛. This case with excitons excited
initially in two different states 𝑛 and 𝑛′, for example by using two different lasers (see
below), will be called asymmetric Rydberg blockade. If both excitons are in the same state,
i.e. 𝑛=𝑛′, referred to as the symmetric Rydberg blockade, one finds the following increase
with 𝑛:

𝐶6(𝑛, 𝑛′) ∝ 𝑛11 . (6.5)

If the pair state energies 𝐸𝑛,𝑛′ and 𝐸𝑘,𝑘′ are degenerate or quasi-degenerate, i.e. the
Förster defect amounts to zero (cf. Eq. (6.2)), one obtains energy corrections of first order,
called resonant dipole-dipole or Förster interaction:

𝛥𝐸F = ±𝐶3

𝑅3 = ± ⟨𝑛, 𝑛′ | 𝑉dd | 𝑘, 𝑘′⟩ . (6.6)

Again, scaling laws can be found, which read for the both relevant cases

𝐶3(𝑛, 𝑛′) ∝ 𝑛2 (𝑛′)2 , 𝑛 ≠ 𝑛′ (6.7)
𝐶3(𝑛) ∝ 𝑛4 , 𝑛 = 𝑛′ . (6.8)

Note that the coupled states still need to have opposite parity.
1For the dipole transition matrix elements between states of largely different 𝑛 and 𝑘, one finds

⟨𝑛 ∣ d𝑛,𝑘 ∣ 𝑘⟩ ∝ 𝑛−3/2 [Gal+08; Bet+57]
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Figure 6.1 Schematic illustration of the Rydberg blockade mechanism. (a) Energy scheme
of pair state energies as a function of inter-excitonic distance 𝑅. At a distance smaller
than the blockade radius 𝑅𝐵, the energy of the pair state involving two Rydberg states,
|𝑛, 𝑛⟩, is shifted out of the resonance linewidth 𝛤𝑛 by the interaction energy 𝐸int and the
excitation is not possible. (b) Grey spheres illustrate the crystal lattice, orange spheres
with green (hole) and red (electron) dots illustrate excitons with a certain electron-hole
separation 𝑟𝑛,𝑙. Excitations of Rydberg excitons with high quantum numbers 𝑛 (large 𝑟𝑛,𝑙)
are only possible at distances larger than the blockade radius 𝑅𝐵, indicated by the red
spheres. Ground state excitons (small 𝑟𝑛,𝑙 and negligible blockade radius) can in principle
be excited within the blockade volume of the Rydberg states as well.

As mentioned above, the interaction strengths increase drastically with 𝑛. These strong
interactions lead to the Rydberg blockade effect. The Rydberg blockade is schematically
shown in Fig. 6.1 (a) and explained in the following. Typically, for atoms one starts from
the energy of the pair state that contains the ground states of the two interacting atoms.
In contrast, in the case of excitons, the ground state is given by the empty crystal. In
the following it is denoted by |0, 0⟩. The energy of a pair state with one exciton in a
Rydberg state, |0, 𝑛⟩, is simply given by 𝐸0,𝑛 = 𝐸𝑛, indicated by the middle horizontal
line. The energy of the doubly excited pair state, |𝑛, 𝑛⟩, contains the sum of the two
single energies 2𝐸𝑛, indicated by the dashed horizontal line, and an additional energy shift
that is given by the interaction energy 𝛥𝐸int of the two excited states. The interaction
energy 𝐸int can be of van der Waals type or of Förster type and lead to positive (repulsive)
or negative (attractive) energy shifts. If the energy shift is larger than the absorption
linewidth, 𝛥𝐸int ≫ 𝛤𝑛, the pair state consisting of two excitons cannot be excited by a
spectrally narrow laser with an energy resonant to the single exciton transition. Since the
interaction strength depends on the separation R of the involved excitons, one can define
a radius RB around a single Rydberg exciton within which this condition is fulfilled. This
radius is called the blockade radius and the excitation of two or more Rydberg excitons is
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blocked inside the corresponding blockade volume

𝑉B = 4
3

𝜋𝑅3
B = {

(𝐶6/𝛤𝑛)1/2 , van der Waals
𝐶3/𝛤𝑛 , Förster

. (6.9)

In Ref. [Kaz+14], the blockade radius was estimated to be of the order of 10 𝜇m for an
exciton with quantum number 𝑛 = 24, which is about ten thousand times larger than the
Bohr radius for 𝑃 excitons 𝑎B = 1.11 nm (cf. Sec. 2.3) or ten times larger than the average
electron-hole separation of that state 𝑟24𝑃 ≈ 1 𝜇m.
Following this concept, the number of Rydberg excitons that can be excited by a spec-

trally narrow light source in a given crystal volume is limited by their interaction strength
among each other and the corresponding blockade volume. The situation is schematically
illustrated in Fig. 6.1 (b). The grey dots indicate the crystal lattice. Excitons are shown
as orange spheres with green and red dots representing schematically electrons and holes
with separation 𝑟𝑛,𝑙. Rydberg excitons with large 𝑟𝑛,𝑙 have large dipole moments and even
larger blockade radii, that are shown by the red spheres. Hence, these excitons can only
be excited outside the blockade volume of other Rydberg excitons. Excitons with small
𝑟𝑛,𝑙 have negligible dipole moments and can in principle be excited anywhere in the crystal
volume, as indicated by small orange spheres.
With a given density of Rydberg excitons excited, the crystal might become transparent

for light with an energy equal to the resonance energy of a Rydberg state. The pair states
are detuned from the laser energy and the absorption line smears out with increasing laser
power, as observed for excitons in Ref. [Kaz+14], but also earlier in a similar way for
Rydberg atoms in Refs. [Sin+04; Sin+05].

6.2 Experimental setting

In Ref. [Kaz+14], the bleaching of absorption lines with increasing laser power was observed
in a single-beam experiment. While the laser scans a resonance, the density of excitons
excited varies depending of the laser’s detuning from the resonance energy. Hence, the
measured spectral line shapes result from an undefined exciton density and are rather
unsuitable to get information about the underlying interaction mechanism.
Here, a different experimental setting is used with a focus on the asymmetric Rydberg

interaction, using states of different principal quantum numbers 𝑛 and 𝑛′. For this purpose,
a pump-probe-excitation scheme with two CW lasers is used, as described in detail in Ch. 3.
The pump laser’s energy is fixed on a resonance with principal quantum number 𝑛′ while
the probe laser scans a range of other states with principal quantum numbers 𝑛. The probe
power is set to a low value of about 1 𝜇W and the pump power Ppump is increased. With
changing pump power, the density 𝜌 of pump excitons with quantum number 𝑛′ is varied
in the crystal in first-order approximation where we neglect possible decay channels into
other states. Hence, this scheme allows one to observe the optical response of the probed
state’s line shape to a well-defined pump exciton density that can be traced back directly
to the interaction between excitons with quantum number 𝑛′ and 𝑛.
The pump beam’s intensity is modulated and the transmitted probe beam is detected

with a Lock-In amplifier. The modulation frequency of about 3 kHz is low compared to
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timescales of dynamical processes in the crystal. Therefore, this scheme generates a quasi-
CW signal and allows one to measure directly the pump-induced change in the transmitted
intensity, i.e. the CW-differential transmission (cf. Eq. (3.5))

𝛥𝐼 ∝ 𝐼T, pump − 𝐼T, no pump . (6.10)

Here, positive signals correspond to an enhancement of transmission and indicate a bleaching
of an absorption line. This Lock-In scheme allows one to measure small changes in the
spectra with high accuracy and independent of background fluctuations. The latter could
cause additional offsets distorting a precise determination of peak heights. All measurements
shown in this chapter are performed at sample 𝐻7 and 1.35 K.

6.3 Separation of interaction regimes
The changes in the differential spectra shown throughout the next sections contain infor-
mation about the underlying interactions between the pumped and probed states. In this
section, the overall trend of these spectra as a function of pump power shall be described,
as it will turn out to be similar in the following sections, independent of the pump laser’s
energy. Therefore, the changes of the resonance 𝑛 = 11 at different pump powers are exem-
plarily shown in Fig. 6.2 (a). The pump laser energy is fixed on 𝑛′ = 16 in this particular
case. In general, the differential curves around the resonance 𝑛 = 11 show an extremum
strongly varying in amplitude at a constant energy 𝐸max and a significant crossing on the
high energy side at 𝐸0. While a detailed line shape analysis is given in the next section,
here the focus lies on the dependence of the amplitude of this extreme point 𝛥𝐼(𝐸max) on
pump power. Since the extremum does not shift in energy, it is referred to as the differential
peak height in the following sections.

The dependence of the differential peak height on pump power is used to differentiate
between different interaction regimes. Therefore, the differential peak height extracted from
panel (a) is shown in panel (c) as a function of pump power. The signal can be divided
into three regimes. For low pump powers, the trace of 𝛥𝐼(𝐸max) reveals a nonlinear de-
crease meaning an increase in absorption as indicated by the arrow. This effect saturates
fast at around 10 𝜇W. Note that the value for zero pump power is added manually for a
better visibility of this nonlinearity. The nonlinearity is followed by a linear increase over a
wider range of powers up to approximately 100 𝜇W. At higher powers the response starts
to saturate, where full saturation corresponds to a total bleaching of the absorption line
in the absolute spectrum. Since the Rydberg blockade is expected to result in a reduction
of absorption at the resonance energy, which means positive values of 𝛥𝐼(𝐸max), the sec-
ond regime, in which the peak heights depend linearly on the pump power Ppump, will be
analyzed in the following sections with regard to the dipole-dipole interaction. The initial
nonlinear behavior has to be related to a different interaction mechanism, that is so far
unknown, and will be neglected in the next two sections. In general, the power range where
the nonlinear effect is dominant depends on the principal quantum number 𝑛 of the probed
state and the magnitude of it is found to be more pronounced for lower 𝑛. Moreover, the
nonlinearity can be completely absent for states with 𝑛 > 𝑛′. It is further discussed and
investigated at the end of this chapter in Secs. 6.6 and 6.7, clarifying its dependence on
excitation energy.
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Figure 6.2 (a) Measured differential spectra around the 𝑛 = 11 resonance. Here, we
find negative peak amplitudes for low excitation powers. (b) Corrected spectra around
the 𝑛 = 11 peak after data correction as described in the text. (c) Amplitude of the
extreme point of the 𝑛 = 11 resonance from panel (a) at the energy 𝐸max as a function of
pump power. Black dots show the uncorrected signal. The trace can be divided into three
regimes, starting with a fast saturating nonlinear decrease of transmission, followed by a
linear increase over a wider range of powers up to 100 𝜇W. At higher powers the curve
flattens and finally saturates at powers around 800 𝜇W. The value at zero pump power is
added manually to obtain a better visibility of the nonlinearity. A fit to the linear regime
(red dashed line) reveals an intercept, that is subtracted from the data at this energy.
Blue dots show the corrected amplitudes. This procedure is repeated at every energy to
correct the spectra for the initial nonlinear behavior.

In order to focus on the Rydberg interaction regime, given by the linear dependence
on pump power, the spectra discussed in the following two sections are corrected for this
nonlinear decrease, as shown in Fig. 6.2 (c). The measured data (black dots) is corrected
by subtracting the maximum of the negative nonlinear amplitude, that is obtained by the
intercept of a fit to the linear regime (red dashed line). This is done at every energy of the
spectrum. As a result, in the corrected spectra (blue dots) the linear increase (red solid
line) starts at 𝛥𝐼 = 0. Panels (a) and (b) show exemplarily the corresponding differential
transmission around the resonance 𝑛 = 11 with and without correction for different pump
powers.
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Figure 6.3 (a) Differential transmission signal 𝛥𝐼 for 𝑛 = 6 to 𝑛 = 21, recorded with a
pump laser energy fixed on the 𝑛′ = 16 𝑃 resonance. The data is corrected as described
in Sec. 6.3. The pump laser power is increased from 5 to 1000 𝜇W. For the resonances
𝑛 ≤ 8, only spectra at pump powers higher than 100 𝜇W are shown due to the small
changes at lower powers. The transmission is enhanced at the resonance energies and
reduced in between the lines indicating a redistribution of oscillator strength. (b) Closeup
of the 𝑛 = 11 resonance in the linear regime (see text). The line shape exhibits a strongly
increasing but non-shifting maximum at energy 𝐸max and a root on the high energy side
at 𝐸0. The line shape is universal for all 𝑛. (c) Differential peak heights at 𝐸max as a
function of pump laser power for 𝑛 = 6 to 𝑛 = 16. For every 𝑛 a linear increase is found
that transforms into a saturation plateau. The onset of saturation shifts to lower powers
with increasing 𝑛. Full saturation corresponds to a full bleaching of the absorption line.
Solid lines show fits to the linear power regime with a slope 𝛽(𝑛, 𝑛′).

6.4 Asymmetric Rydberg blockade

In the following, a series of measurements where the pump laser’s energy is fixed to the
resonance 𝑛′ = 16 is analyzed in detail. The obtained differential spectra for various pump
powers are shown in Fig. 6.3 (a).

While pumping the state 𝑛′ = 16, the probe laser detects changes for all states from
𝑛 = 6 up 𝑛 = 22. Here, the corrected data is considered as described in the section before
with a focus on changes in the linear power regime. For all 𝑛, the transmission is enhanced
around the resonance energies and reduced in between. Starting from 𝑛 = 6, these effects
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become more pronounced with increasing 𝑛. Above 𝑛 = 12, the maximum amplitude of a
particular peak decreases. This simply reflects the reduction of oscillator strength in the
high-𝑛 regime known from the unperturbed spectra (cf. Fig. 2.4 (b)). These states already
saturate at pump powers, where lower 𝑛 still show pronounced changes.

The general spectral appearance is the same for every resonance and is described in the
following. Figure 6.3 (b) shows a closeup of the resonance 𝑛 = 11. As indicated, we find
a maximum strongly varying in amplitude but not shifting in energy at 𝐸max. Further,
the line shape reveals a root on the high energy side at 𝐸0. Here, all the lines intersect in
one point meaning that the presence of pump excitons has no effect at exactly that energy.
Remarkably, the difference 𝐸max,n − 𝐸0,n normalized to the linewidth 𝛤𝑛 is found to be
universal for all 𝑛. This quantity will be discussed later in Sec. 6.4.4. Besides the spectrally
narrow increase of transmission at the center, we find a decrease of transmission or rising
absorption mainly located on the high energy side of the resonance smeared out to a broad
tail. An analogue tail can be observed on the low energy side as well but of lower amplitude.
In addition, it is possible that the lines cross in one point on the low energy side as well,
at very low pump powers. However, the data showing this crossing is less reliable due to
the noise level in this spectral region. Further, the lines rather diverge continuously with
increasing power.

This spectral shape describes a pump-induced redistribution of oscillator strength that
is of repulsive character for most states and attractive for a few. This is in accordance
with Ref. [Wal+18b], where it is shown that the potential landscape of the van der Waals
interaction between two Rydberg excitons spreads into a complex pattern of attractive and
repulsive potential curves for low enough separations of the involved excitons.

Next, the increase of the differential peak maximum, i.e. the differential peak height,
is shown in Fig. 6.3 (c) as a function of pump power. For every 𝑛, a linear dependence
on pump power is observed in a certain range of pump powers. The colored solid lines
show fits in the linear power range of a particular 𝑛. Since the slopes of these fits increase
with 𝑛, their dependence on 𝑛 is used later in Sec. 6.4.3 for a quantitative analysis. The
increase passes into saturation at higher powers, while the onset of saturation shifts to lower
powers with increasing 𝑛. Note that saturation in 𝛥𝐼 corresponds to a total bleaching of
the absorption line in pure spectra. The visibility of the root on the high energy side of a
particular differential peak (panel (b)) corresponds in a good approximation to the regime
of linear increase of the peak’s height. For higher pump powers it begins to smear out.
Furthermore, the analysis given in this section is restricted to powers below 200 𝜇W, which
is the saturation power of 𝑛′ = 16.

In order to describe the optical response of an exciton of quantum number 𝑛 to a gas of
Rydberg excitons with 𝑛′, a theoretical approach will be described. The model has been
developed by Valentin Walther and Thomas Pohl and is summarized in the following.
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6.4.1 Equations of motion
The excitation of excitons at position R by a light field in 𝑧 direction is described by the
following two equations of motion

∂𝑡ℰ(R) + 𝑐𝑛̄∂𝑧ℰ(R) = −𝑖𝑔𝑋̂(R) , (6.11)

∂𝑡𝑋̂(R) = −
̃𝛤

2
𝑋̂(R) − 𝑖𝑔ℰ(R) , (6.12)

with the exciton and light field amplitudes 𝑋̂(R) and ℰ(R) and the light-matter coupling
strength 𝑔. Further, 𝑐 is the speed of light and 𝑛̄ is the index of refraction (cf. Ch. 2). The
parameter ̃𝛤 = 𝛤 − 2𝑖𝛿 contains the linewidth 𝛤 and a detuning from resonance frequency
𝛿/ℏ = 𝜔 − 𝜔𝑛, where 𝜔 denotes the frequency of light and 𝜔𝑛 is the resonance frequency.
Note that the index 𝑛, that indicates an 𝑛 dependence of 𝑔 and 𝛤, is left out here for
simplicity. In the steady state, ∂𝑡𝑋̂(R) = 0, Eq. (6.12) yields the steady states for the
exciton annihilation operator 𝑋̂(R) and the exciton creation operator 𝑋̂†(R):

𝑋̂(R) = −𝑖2𝑔
̃𝛤
ℰ(R), 𝑋̂†(R) = 𝑖2𝑔

̃𝛤
ℰ∗(R) . (6.13)

Further, solving for the steady state of Eq. (6.11), ∂𝑡ℰ(R) = 0, with an ansatz ℰ(R) = ℰ0𝑒𝑖𝑘𝑧

yields the spectral shape of the absorption line of a sample of thickness 𝑑 in terms of intensity
(𝐼 ∝ |𝐸|2)

𝐼𝑇 = 𝐼0 exp(−ℎ(𝛿)𝑑) = 𝐼0 exp(− 4𝑔2𝛤
𝑐𝑛̄(4𝛿2 + 𝛤 2)

𝑑) . (6.14)

The first term of the exponent, ℎ(𝛿), is the equivalent of the absorption coefficient in
Eq. (3.1). The peak height at the resonance energy (𝛿 = 0) in terms of optical density
OD = 𝛼𝑑 is connected to 𝑔 and 𝛤 via

𝐻OD = ℎ(𝛿 = 0)𝑑 = − ln(𝐼T(𝛿 = 0)
𝐼0

) = 4𝑔2

𝑐𝑛̄𝛤
𝑑 , (6.15)

in comparison to the peak height from Eq. (2.43) in Sec. 2.5, which reads 𝐻OD = 𝑂
𝜋𝛤 . The

pump exciton density operator is given by ̂𝜌𝑝(R′) = 𝑋̂†
𝑝(R′)𝑋̂𝑝(R′). Pump excitons are

created at position R′ by 𝑋̂†
𝑝(R′). Their density is connected to the pump power by

𝜌𝑝(R′) = ⟨𝑋̂†
𝑝(R′)𝑋̂𝑝(R′)⟩ = 4𝑔′2

| ̃𝛤 ′|2
|ℰ(R′)|2

(𝛿′=0)
∝ 𝑔′2

𝛤 ′2Ppump . (6.16)

6.4.2 Interaction of Rydberg excitons
Now, the interaction between pump and probe excitons in regard to a two-particle interac-
tion potential 𝑉 int(R − R′) is discussed. First, a mean-field model is considered. Here, the
presence of a pump exciton density 𝜌𝑝 simply leads to a mean field energy shift 𝛿mf of the
probe exciton line, given by

𝛿mf = ∫ 𝑑R′𝑉 int(|R − R′|)𝜌𝑝 . (6.17)
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6.4 Asymmetric Rydberg blockade

The differential curves resulting from such a mean-field interaction are shown in Fig. 6.4 (a)
for three different pump powers. They are calculated in terms of the differential absorption
𝛥𝛼. We find an increasing maximum and minimum but also a constantly shifting energy.
Most importantly, the lines do not intersect in one point as found in the experiment. Thus,
an interaction on the mean-field level can be ruled out as the underlying exciton interaction
mechanism.
Next, we consider a more complex interaction considering correlations between pump

and probe excitons. First, the exciton equation of motion (Eq. (6.12)) is expanded by the
interaction term

∂𝑡𝑋̂(R) = −
̃𝛤

2
𝑋̂(R) − 𝑖𝑔ℰ(R) − 𝑖 ∫ 𝑑R′𝑉 int(|R − R′|)𝑋̂†

𝑝(R′)𝑋̂𝑝(R′)𝑋̂(R) . (6.18)

To focus on the interaction, the last term in Eq. (6.18) is considered and one calculates

∂𝑡𝑋̂
†
𝑝(R′)𝑋̂𝑝(R′)𝑋̂(R) = ∂𝑡(𝑋̂

†
𝑝(R′)𝑋̂𝑝(R′))𝑋̂(R)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0

+𝑋̂†
𝑝(R′)𝑋̂𝑝(R′)∂𝑡𝑋̂(R)

= −
̃𝛤

2
𝑋̂†

𝑝(R′)𝑋̂𝑝(R′)𝑋̂(R) − 𝑖𝑔𝑋̂†
𝑝(R′)𝑋̂𝑝(R′)ℰ(R)

− 𝑖𝑉 int(|R − R′|)𝑋̂†
𝑝(R′)𝑋̂𝑝(R′)𝑋̂(R)

− 𝑖 ∫ 𝑑R″𝑉 int(|R − R″|)𝑋̂†
𝑝(R′)𝑋̂†

𝑝(R″)𝑋̂𝑝(R′)𝑋̂(R″)𝑋̂(R) .

(6.19)

In the first row of Eq. (6.19), a time-independent pump exciton density is assumed
(∂𝑡(𝑋̂

†
𝑝(R′)𝑋̂𝑝(R′)) = ∂𝑡 ̂𝜌𝑝 = 0). The second and third row include correlations of lowest

order. The fourth row includes interactions of higher order, i.e. between multiple pump
excitons and one probe exciton, which are neglected in the following. In the steady state
(∂𝑡𝑋̂(R) = 0), Eq. (6.19) then yields

𝑋̂†
𝑝(R′)𝑋̂𝑝(R′)𝑋̂(R) = ̂𝜌𝑝(R′)𝑋̂(R) = −

𝑖𝑔ℰ(R) ̂𝜌𝑝(R′)
̃𝛤

2 + 𝑖𝑉 int(|R − R′|)
. (6.20)

Inserted in Eq. (6.18), the steady state solution for the probe exciton reads

𝑋̂(R) = − 2
̃𝛤
(𝑖𝑔ℰ(R) + 𝑖 ∫ 𝑑R′𝑉 int(|R − R′|) (−

𝑖𝑔ℰ(R) ̂𝜌𝑝(R′)
̃𝛤

2 + 𝑖𝑉 int(|R − R′|)
)) . (6.21)

The pump excitons are assumed to be homogeneously distributed and their density is thus
independent of R′, 𝜌𝑝(R′) → 𝜌𝑝. Insertion of Eq. (6.21) in Eq. (6.11) leads to the probe
light equation

∂𝑧ℰ(R) = − 2𝑔2

𝑐𝑛̄ ̃𝛤
⋅ [1 − 𝑖𝜌𝑝 ∫ 𝑑R′ 𝑉 int(|R − R′|)

̃𝛤
2 + 𝑖𝑉 int(|R − R′|)

] ℰ(R) , (6.22)

where, again, the steady state is considered (∂𝑡ℰ(R) = 0). This equation can be solved
analytically and yields for the differential transmission

𝛥𝐼 = 𝐼0𝑒−ℎ(𝑥)𝑑 (𝑒𝑠𝜅(𝑥)𝑑 − 1) . (6.23)
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Figure 6.4 (a) Calculated differential absorption resulting from a mean-field shift shown
for three different interaction strengths. The spectra show both a maximum and minimum
shifting in energy and do not intersect in one point. (b) Calculated differential absorption
obtained within a model including exciton correlations. Here, the line shape of a purely
repulsive van der Waals potential is shown for three different interaction strengths. In
agreement with the experiment, we observe a non-shifting maximum at 𝑥max and a root
on the high energy side at 𝑥0 where all lines cross.

Here, 𝑥 = 𝛿/𝛤 is used as the normalized detuning. The first factor, 𝐼0𝑒−ℎ(𝑥)𝑑, describes
the absorption line without interaction, as given by Eq. (6.14). 𝑠𝜅(𝑥) reflects the type
of interaction, indicated by 𝜅. Remarkably, the solution yields both a fixed maximum’s
position and a power-independent root on the high energy side. However, only power-law
potentials of the form

𝑉 int(𝑅) = 𝐶𝜅/𝑅𝜅 (6.24)

are found to yield such a universal root at a fixed 𝑥0 for all 𝑛 as found in the experiment.
For a van der Waals interaction with 𝜅 = 6, we find

𝑠6(𝑥) = 8
√

2𝜋2𝑔2

3𝑐𝑛̄𝛤 3/2 𝜌𝑝 [ |𝐶6|√
1 + 4𝑥2

]
1/2 1

1 + 4𝑥2 (cos 𝜙(𝑥)
2

− 2𝑥 sin 𝜙(𝑥)
2

) , (6.25)

with 𝜙(𝑥) = arg(𝑖𝐶6/(1 − 2𝑖𝑥)) and the branch cut −𝜋 < 𝜙(𝑥) < 𝜋. This function is shown
in Fig. 6.4 (b) for different pump densities and a purely repulsive potential. It indeed reveals
an asymmetric curve shape with a non-shifting maximum position 𝑥max and a root at 𝑥0
on the high energy side in convincing agreement with the observed spectra. In general, the
universal root can be found for other types of power-law potentials as well, for instance the
Förster interaction. Hence, further properties of this curve shape will be discussed in the
next two sections to differentiate between the van der Waals and the Förster interaction.

6.4.3 Scaling with principal quantum number 𝑛

Besides the general line shape, one may use another criterion to identify the exciton inter-
action potential. It is given by the signal’s dependence on the principal quantum number
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Figure 6.5 (a) Theoretical scaling of 𝛽(𝑛, 𝑛′) for the interaction coefficient 𝐶6(𝑛, 𝑛′) with
𝑛′ = 16 (black solid line). Blue and red dashed lines give the limits of 𝑛 ≪ 𝑛′ and
𝑛 ≫ 𝑛′. The scaling for 𝐶3(𝑛, 𝑛′) coincides with the blue dashed line, scaling as 𝑛5. The
mechanisms show different scalings for 𝑛 ≫ 𝑛′ assuming 𝛤𝑛 ∝ 𝑛−3. Curves are shifted
vertically for clarity. (b) Comparison of experimental (dots) and theoretical scalings for
both van der Waals (black line) and Förster (blue line) scenarios. In both cases we find
a good agreement with the data. The inclusion of experimental linewidths 𝛤𝑛,exp rescales

̃𝛽(𝑛, 𝑛′) in both cases making their relative scaling almost indistinguishable in the available
𝑛 regime. The grey area indicates the error for the van der Waals case, arising from the
experimental linewidths. Curves are shifted vertically to coincide at 𝑛 = 6. The grey
vertical lines indicate 𝑛′ = 16 in both panels.

𝑛. For low interaction strengths 𝑠𝜅(𝑥)𝑑 ≪ 1, the differential signal Eq. (6.23) reads

𝛥𝐼 ≈ 𝐼0𝑒−ℎ(𝑥)𝑑𝑠𝜅(𝑥)𝑑 , (6.26)

where both ℎ(𝛿) and 𝑠𝜅(𝑥) depend on 𝑛 via 𝑔𝑛 and 𝛤𝑛. Their dependence on 𝑛 is from now on
indicated by the index 𝑛. For the interaction coefficient 𝐶6(𝑛, 𝑛′), the 𝑛 dependence is given
by Eq. (6.4) in Sec. 6.1. Since the light-matter coupling strength 𝑔𝑛 depends linearly on the
transition dipole matrix element between the ground and final state, its dependence on 𝑛
reads 𝑔𝑛 ∝ 𝑑𝑛 ∝ 𝑛−3/2 and 𝑔2

𝑛 ∝ 𝑛−3. Thus, for an ideal system, 𝑔2
𝑛/𝛤𝑛 ∝ 𝑛−3/𝑛−3 = const.

However, as known from the experiment, these ideal scalings do not hold for high 𝑛 (cf.
Sec. 2.5). Therefore, we consider Eq. (6.26) for small detunings |𝑥| ≪ 1 only and can
separate the 𝑛-dependent part

𝛥𝐼 ∝ 𝑔2
𝑛

𝛤𝑛
(|𝐶𝜅(𝑛, 𝑛′)|

𝛤𝑛
)

3/𝜅 𝑔2
𝑛′

𝛤 2
𝑛′
Ppump ⋅ 𝑒[− 4𝑔2𝑛𝑑

𝑐𝑛̄𝛤𝑛
] = 𝛽𝜅(𝑛, 𝑛′)Ppump , (6.27)

characterized by an 𝑛-dependent linear slope 𝛽𝜅(𝑛, 𝑛′). With the peak height of the linear
spectrum in terms of optical density 𝐻OD = 4𝑔2

𝑛
𝑐𝑛̄𝛤𝑛

𝑑 (Eq. (6.15)) one finds

𝛽𝜅(𝑛, 𝑛′) ∝ 𝐻OD (|𝐶𝜅(𝑛, 𝑛′)|
𝛤𝑛

)
3/𝜅

⋅ 𝑒−𝐻OD . (6.28)
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In analogy to Ref. [Kaz+14], the information about the 𝑛 dependence of 𝐶𝜅(𝑛, 𝑛′) enables
the determination of the scaling of the slope 𝛽𝜅(𝑛, 𝑛′) with 𝑛 and 𝑛′ for the asymmetric
scenario. Assuming an ideal system, 𝐻OD = const., it reads in case of 𝜅 = 6 and the scalings
derived in Eq. (6.4)

𝛽vdW(𝑛, 𝑛′) ∝ √𝐶6(𝑛, 𝑛′)
𝛤𝑛

∝ {
𝑛5(𝑛′)5 for 𝑛 ≪ 𝑛′

𝑛3.5(𝑛′)6.5 for 𝑛 ≫ 𝑛′ . (6.29)

For Förster (𝜅 = 3), the scaling reads (cf. Eq. (6.7))

𝛽F(𝑛, 𝑛′) ∝ 𝐶3(𝑛, 𝑛′)
𝛤𝑛

∝ 𝑛5(𝑛′)5 , (6.30)

which does not depend on the relation of 𝑛 and 𝑛′. The functions 𝛽vdW and 𝛽F are shown
in Fig. 6.5 (a) in dependence on 𝑛 and 𝑛′ = 16. The black curve shows the van der Waals
case 𝛽vdW with both limits indicated by the blue and red dashed lines. The Förster case
(𝛽𝐹) is given by the blue dashed line as well, since the scalings for both types of interaction
coincide for 𝑛 ≪ 𝑛′. As the dependence on 𝑛 differs for 𝑛 ≫ 𝑛′ the curves for 𝛽vdW and 𝛽F
separate for high enough 𝑛. In principle, this finding allows one to distinguish between the
van der Waals interaction and the Förster interaction. Note that this is different for the
symmetric Rydberg blockade (𝑛 = 𝑛′), where both mechanisms result in the same scaling,
following an 𝑛10 dependence (cf. [Kaz+14]).

However, including experimental values for the linewidth, 𝛤𝑛,exp, results in an 𝑛-dependent
modification of 𝛽(𝑛, 𝑛′), referred to as ̃𝛽(𝑛, 𝑛′), as can be seen in Fig. 6.5 (b). The black
solid line shows the resulting scaling behavior of the van der Waals interaction including
experimental linewidths, ̃𝛽vdW = √𝐶6(𝑛, 𝑛′)/𝛤𝑛,exp. The grey area indicates the error of
the expected scaling, resulting from uncertainties of the experimental linewidths. The blue
line shows the scaling behavior of 𝛽F(𝑛, 𝑛′) in case of a Förster-type interaction without
error bars for clarity. The curves are shifted vertically to coincide at 𝑛 = 6. Interestingly,
the 𝑛-dependent broadening of the experimental linewidths in the high-𝑛 regime flattens
both curves. As a result, the interaction mechanisms show an almost indistinguishable
dependence on 𝑛 with only a tiny difference at high 𝑛.

The experimental values of ̃𝛽(𝑛, 𝑛′) are obtained from the slopes 𝛽(𝑛, 𝑛) of linear fits to
the differential peak heights at 𝐸max as a function of pump power, as shown in Fig. 6.3 (c) as
solid lines. The fits are restricted to the linear regime. In order to obtain the intrinsic scaling
law ̃𝛽(𝑛, 𝑛′), the slopes 𝛽(𝑛, 𝑛′) have to be corrected by the experimentally determined peak
heights in terms of optical density at zero pump power 𝐻OD,n,exp (cf. Eq. (6.28))

̃𝛽(𝑛, 𝑛′) = 𝛽(𝑛, 𝑛′)
𝐻OD,n,exp exp(−𝐻OD,n,exp)

. (6.31)

The obtained values are shown as black dots in Fig. 6.5 (b) as a function of 𝑛. Within
the errors, the experimentally obtained values for ̃𝛽(𝑛, 𝑛′) are in good agreement with the
expected scaling for the van der Waals interaction, while the Förster-type interaction slightly
underestimates the observed trend. However, the small differences between ̃𝛽vdW(𝑛, 𝑛′) and

̃𝛽F(𝑛, 𝑛′) hardly allow for a clear distinction between both interaction mechanisms. In
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principle, a difference would stem from the absolute values of 𝐶6(𝑛, 𝑛′) and 𝐶3(𝑛, 𝑛′), but
the analysis here is restricted to a comparison of relative values, since the absolute values
of 𝐶6(𝑛, 𝑛′) or 𝐶3(𝑛, 𝑛′) in case of the asymmetric Rydberg Blockade are still unknown
yet. In addition, we obtain only relative values for ̃𝛽(𝑛, 𝑛′) in the experiment since the
experimental data measured with a Lock-In amplifier includes a constant but arbitrary
amplification factor.

6.4.4 Exclusion of Förster interaction
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Figure 6.6 Ratio 𝛥𝐸𝑛/𝛤𝑛 as a function of 𝑛 obtained from differential transmission
curves. Dashed lines give theoretical values for van der Waals (𝜅 = 6) and Förster (𝜅 = 3)
interaction. The values are in good agreement with the van der Waals model. Deviations
at low 𝑛 can be traced back to an asymmetric line shape that is not considered in theory,
see text.

So far, the general line shape of the differential transmission and the 𝑛-dependent scal-
ing yield convincing arguments for a power-law-like interaction mechanism. In detail, the
evaluation of ̃𝛽(𝑛, 𝑛′) indicates the presence of Förster or van der Waals mechanisms, but
does not allow us to distinguish between both in experiment. However, the line shape of the
differential spectra gives a further possibility to rule out power-law potentials other than the
van der Waals interaction. As mentioned earlier, the quantity 𝛥𝐸𝑛/𝛤𝑛 = 𝑥0 − 𝑥max is an-
other characteristic indicator for the exciton interaction potential and has a universal value
for all 𝑛 in case of power-law potentials. For a Förster-like interaction potential (𝜅 = 3) one
finds 𝛥𝐸𝑛/𝛤𝑛 = 0.3 and for a van der Waals-like interaction potential (𝜅 = 6) one finds
𝛥𝐸𝑛/𝛤𝑛 = 0.45. While it is in general possible to determine these values for power-law po-
tentials with values of 𝜅 different than 𝜅 = 3 and 𝜅 = 6, the analysis here is restricted to the
van der Waals- and Förster-type potentials, since these are the most relevant candidates for
dipole-dipole interaction potentials between Rydberg-excitons. Their characteristic values
for 𝛥𝐸𝑛/𝛤𝑛 are shown in Fig. 6.6 in comparison to the experimentally determined numbers.
The error bars mainly stem from uncertainties in the linewidths. Within the error bars, the
data is mostly in accordance with the van der Waals-type value of 𝛥𝑛/𝛤𝑛 = 0.45, rather
than with the Förster-type value. Still, the data shows a constantly increasing deviation
towards lower 𝑛. This deviation shows an analogue trend as the asymmetry parameter 𝑞𝑛,
that increases continuously towards lower 𝑛 as well, see Fig. 2.4 (d). Hence, the observed
deviation might be traced back to the asymmetric line shape at lower 𝑛 in the experiment,
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whereas the theory presented so far is based on symmetric line shapes. The influence of
the asymmetry on the theoretical values for 𝛥𝑛/𝛤𝑛 is the subject of ongoing theoretical
research.

Nevertheless, as the data does is not in agreement with the value for 𝜅 = 3, the quantity
𝛥𝐸𝑛/𝛤𝑛 can be used here to rule out the Förster-type interaction as the underlying exciton-
exciton interaction mechanism. So far, the studies focusing on the symmetric case, reported
in Ref. [Kaz+14], did not allow one to draw this conclusion.

Note, the shape of the exciton line resulting from the exciton-exciton interaction is not
only determined by the type of power-law interaction potential but also by the ratio of
repulsive and attractive energy potential curves contributing to the interaction. According
to Ref. [Wal+18b], the landscape of potential energy curves depends strongly on the distance
R between the interacting excitons which is an unknown quantity so far. However, the value
of 𝛥𝐸𝑛/𝛤𝑛 holds for all configurations of repulsive and attractive potentials and thus does
not depend on the exact potential landscape. Therefore it can be used as a reliable quantity
to identify the interaction mechanism. A non-vanishing contribution of attractive potentials
is in agreement with the observed increasing absorption on the low energy side of the peak
in Fig. 6.3 (b).

6.5 Comparison with Debye screening

In Ch. 5 of this thesis, the disappearance of exciton lines as a function of plasma density is
studied and explained within the Debye model. Already remarkably low plasma densities
on the order of 0.01 𝜇m−3 lead to the disappearance of excitonic absorption lines with high
quantum numbers 𝑛. Also for pumping below the band gap, as discussed in this chapter,
one might unavoidably create a certain amount of free electron-hole pairs. As described
in detail in Ch. 5, these can be generated by the excitation of 1𝑆 states via the phonon
background in combination with the Auger effect or by direct excitation via the Urbach tail
below the band gap. In addition, resonantly pumped excitons might decay into 1𝑆 excitons
via phonon interaction. These effects can lead to a certain plasma density resulting in some
band gap shift 𝛥 and a reduction of oscillator strength. Following this argumentation, the
effects described in the sections before might in principle be caused by a surrounding plasma
as well. However, free electron-hole pairs might in turn form bound exciton states again
quickly. Whether exciton-exciton interactions or exciton-plasma interactions are dominant
depends on the dynamics of the processes outlined above. Therefore, in the following various
experimental observations are presented that cannot be explained by the Debye model of
Ch. 5 and that help to distinguish between both regimes.

Here, the analysis of the differential transmission discussed in the section before is re-
peated for the plasma-scenario. The pump laser energy is fixed at 2.20 eV, which is about
30 meV above the band gap, and its power increases from 5 to 1000 𝜇W. The resulting
spectra are shown in Fig. 6.7 (a). Surprisingly, the overall spectral appearance seems to
be similar to the one described in Sec. 6.4. Also here, a non-shifting but strongly varying
maximum and a universal root on the high energy side of every resonance are observed, as
shown in the closeup of 𝑛 = 11 in Fig. 6.7 (b). As mentioned earlier, these observations are
only expected for power-law interaction potentials and are therefore in contradiction to the
Debye model.
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Figure 6.7 (a) Differential spectra of 𝑛 = 6 to 𝑛 = 21, recorded with a pump laser energy
fixed above the band gap at 2.20 eV and increasing pump power from 0.5 to 1000 𝜇W.
(b) Closeup of 𝑛 = 11 in the linear regime. Surprisingly, the curve shows a fixed relative
extreme point at 𝐸max and a universal root on the high energy side at 𝐸0, which is only
expected for a power-law interaction potential. (c) Also in this pump-scenario the values
for 𝛥𝐸𝑛/𝛤𝑛 are comparable to the theoretical value for the van der Waals interaction
(𝜅 = 6) of 𝛥𝐸𝑛/𝛤𝑛 = 0.45. This value is indicated by the grey dashed line. The values
are extracted from the spectra in the linear power regime.

In this context, the quantity 𝛥𝐸𝑛/𝛤𝑛 is evaluated for this scenario as well. The values are
shown in Fig. 6.7 (c) and are found to be in good agreement with the value 𝛥𝐸𝑛/𝛤𝑛 = 0.45
that is expected for 𝐶6 and is indicated by the dashed grey line. Hence, also in this pump-
scenario the criteria pointing out the van der Waals mechanism as underlying interaction
are confirmed.
Now, the 𝑛-dependent scaling of the slope ̃𝛽(𝑛) is considered. The differential peak heights

are shown as a function of pump laser power in Fig. 6.8 (a). Also here, a linear dependence
can be found within a narrow power range for each 𝑛. Note, the window in which the data
follows a linear dependence shrinks for exciton resonances with higher quantum numbers
𝑛. For 𝑛 > 16, it already ends below 10 𝜇W, although the absorption lines are far away
from saturation. Still, an estimate of the scaling of this slopes can be given and ̃𝛽(𝑛) can be
calculated, which is shown in Fig. 6.8 (b). Within the Debye model from Ch. 5 one expects
a rather weak 𝑛-dependent scaling of 𝛽(𝑛) resulting from changes of the oscillator strength
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Figure 6.8 (a) Differential peak heights at 𝐸max as a function of pump power Ppump for
principal quantum numbers 𝑛 = 6 to 16 in the plasma-scenario. The solid curves show fits
in the linear regime with a slope 𝛽(𝑛). (b) Experimental scaling of ̃𝛽(𝑛). The dashed line
shows the expected scaling 𝛽Debye ∝ 𝑛3.8, following the Debye model. The solid line shows
the scaling of ̃𝛽(𝑛, 𝑛′) including experimental linewidths 𝛤𝑛,exp. The curves are shifted by
an arbitrary value for comparison. The observed scaling in the data is much stronger than
predicted by the model.

according to 𝑔2
𝑛 ∝ 𝑛0.8. Combined with a linewidth scaling of 𝛤𝑛 ∝ 𝑛−3 this yields for the

Debye scaling

ODpump − ODno pump ∝ 𝛽DebyePpump ∝ 𝑔2
𝑛

𝛤𝑛
Ppump ∝ 𝑛3.8Ppump , (6.32)

which is shown as the dashed line in Fig. 6.8 (b). Including experimental linewidths 𝛤𝑛,exp
in Eq. (6.32) even tilts the curve further towards a smaller increase at high 𝑛 shown by the
solid line. Interestingly, in the small range of a linear power dependence, the experimental
data shows a much steeper slope than predicted by the Debye model. Up to 𝑛 ≈ 15 it
roughly scales as 𝑛7.

In conclusion, assuming only a Debye screening underestimates the observed changes
in the spectra. Additional interactions might stem from bound exciton states generated
by relaxation of free electron-hole pairs. Here, the relaxation into high Rydberg states of
arbitrary principal quantum numbers 𝑛, but also high angular momentum quantum numbers
𝑙 seems to be possible (cf. Sec. 6.5.1). Although the overall trend of vanishing oscillator
strength could be described in accordance with the Debye model in Ch. 5, the analysis
given here reveals deviations from that model at very low pump powers. These deviations
are obtained by the measurement of differential transmission with a Lock-In amplifier that
provides access to changes in peak heights with a higher accuracy compared to absolute
signals.

Another feature observable in the experiment is given by the comparison of states with
different angular momenta, namely 𝑃 and 𝐹. The observations are shown in Fig. 6.9 (a).
Again, the pump laser is fixed at an energy above the band gap. We focus on absorption
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Figure 6.9 (a) Absorption spectrum of 𝑃 and 𝐹 excitons with 𝑛 = 6, 7 and 8, recorded
with a pump laser energy above the band gap at 2.20 eV. The spectra are stacked vertically
by an arbitrary offset and magnified in by a factor of 10 in the spectral region of the 6𝐹 and
7𝐹 states. Remarkably, with increasing pump power Ppump, the 𝑛𝐹 states disappear earlier
than the (𝑛 + 1)𝑃 and (𝑛 + 2)𝑃 states. (b) Quantitative comparison of the normalized
peak heights of 𝑛 = 6 and 𝑛 = 7 𝑃 and 𝐹 excitons, obtained from panel (a). The
Debye prediction is scaled on the abscissa to fit the 𝑃 peak heights (dots). This model
underestimates the drop of peak heights of the 𝐹 excitons obtained from the experiment
(triangles).

spectra of 𝑃 and 𝐹 states with principal quantum numbers 𝑛 = 6 to 𝑛 = 8. With increasing
pump power (from bottom to top) the 𝑛𝐹 states vanish earlier than the (𝑛 + 1)𝑃 states and
even (𝑛 + 2)𝑃 states. This observation is in contradiction with a plasma-induced band gap
shift towards lower energies. Within that model one would expect the absorption lines to
vanish one after the other starting from the high energy side, independent of their angular
momentum.

A more quantitative comparison is given in Fig. 6.9 (b). Here, the normalized peak
heights of 𝑃 and 𝐹 states (dots and triangles) are compared with the model prediction
of the Debye model for different angular momentum states (solid and dashed lines). The
model’s power dependence is scaled by an arbitrary factor to describe the peak heights
of the 𝑃 excitons with minimal mismatch. Obviously, the corresponding prediction for 𝐹
excitons drastically underestimates the strong drop observed in the experiment, as can be
seen by the comparison between the dashed lines and the triangles. In turn, the additional
interaction, that is stronger for states with high angular momenta, might stem from dipole-
dipole interactions between excitons created by relaxation of free electron-hole pairs.
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Figure 6.10 (a) Photoluminescence spectrum of the yellow series at 1.3 K. The system
is excited at 2.3 eV with a power of 2 mW. The signal is integrated in 2 sets for 1.5 hours
each and averaged (blue). The red line shows an additional smoothing of the data in order
to achieve a better signal-to-noise ratio. Excitonic luminescence can be observed for states
𝑛 = 4 to about 𝑛 = 8 with a broad background starting around 𝑛 = 6. For comparison,
in panel (b) an absorption spectrum is shown recorded at an additional plasma excitation
power of 2 mW at 2.20 eV. At this pump power, the band gap is shifted to lower energies
and only states up to 𝑛 ≈ 10 are observable.

6.5.1 Electron-hole pair relaxation - Photoluminescence spectroscopy

The formation of bound exciton states from free electrons and holes can be studied in
photoluminescence experiments. Here, free electron-hole pairs are injected by above band
gap excitation around 2.3 eV (532 nm) at a crystal temperature of 1.3 K. Instead of the
transmitted portion of the incident light, the spectrally resolved emission from the sample
is detected. Similar experiments are reported in Refs. [Kit+17] and [Tak+18], albeit in
a much more comprehensive experimental study. The pump power is set to 2 mW - a
comparably high value - to achieve a good signal-to-noise ratio. The resulting spectrum
is shown in Fig. 6.10 (a). The blue spectrum shows the pure measured signal which is
obtained within an integration time of 2x 1.5 hours. The spectrum is smoothed, shown
by the red line. We can identify 𝑃-shell exciton resonances from 𝑛 = 4 up to 𝑛 = 8. We
find even high angular momentum states populated, since for 𝑛 = 4 additionally 4𝐹 states
on the high energy side of the 𝑃 exciton peak are visible, similar to Ref. [Tak+18]. This
finding underlines the assumption of free carrier relaxation into bound exciton states. In
turn, the population of these states could give rise to a stronger dipole blockade as expected
from the Debye model, resulting in effects such as the faster disappearance of high angular
momentum states compared to the 𝑃 excitons or the steeper scaling of the slope ̃𝛽(𝑛, 𝑛′),
discussed above.

Here, the limitation of exciton signals up to 𝑛 = 8 in turn follows the expectations given
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by a shifted band gap for an applied laser power of 2 mW. This can be demonstrated by the
comparison of the photoluminescence spectrum to an absorption spectrum measured under
equivalent conditions - with a pump laser energy above the band gap at around 2.20 eV.
This is shown in the lower panel. At a power of 2 mW, also in absorption only peaks up to
around 𝑛 = 10 are left and have not vanished into the continuum yet. For that reason alone,
we do not expect to see signals from higher-𝑛 excitons in the photoluminescence spectra. At
lower pump powers as discussed in Sec. 6.5, states with higher 𝑛 might additionally become
populated.
Next, we find a continuous background starting to rise around 𝑛 = 6 with a maximum

height at about 2.17124 eV. This background was observed in Refs. [Tak+18] as well and
partly assigned to the sum of overlapping Lorentzian curves. This is in accordance to
the recent work of Krüger et al. [Krü+20] and will be discussed later in Sec. 6.7 again.
Interestingly, the maximum of this background coincides roughly with the shifted band gap
energy ̃𝐸g of the absorption spectrum shown in the lower panel.

6.6 Variation of 𝑛′
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Figure 6.11 (a) Differential peak heights at 𝐸max for a resonant excitation of 𝑛′ = 12.
The data is stacked vertically. In contrast to Fig. 6.3, the data is not corrected and thus
reveals an initial nonlinearity for low pump powers. Colored solid lines show fits in the
linear power regime for all resonances with 𝑛 ≤ 18. The black vertical line separates the
nonlinear from the linear regime. Traces are shifted vertically for clarity. (b) Slope ̃𝛽(𝑛, 𝑛′)
as a function of 𝑛. The scaling of experimental values (dots) is in agreement with the van
der Waals model for this scenario shown by the black solid line with grey area indicating
the error. The vertical line indicates 𝑛′ = 12.

In Sec. 6.4, the case of resonant excitation of pump excitons with principal quantum
number 𝑛′ = 16 was studied. A good agreement between theory and experiment was
shown, revealing the van der Waals interaction as the underlying interaction mechanism.
Obviously, this asks for the investigation of other pump-scenarios with 𝑛′ different than
𝑛′ = 16. Therefore various configurations with different 𝑛′ are discussed in this section,
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namely 𝑛′ = 12, 10 and 1𝑆. Note, the spectral appearance in the differential transmission
is in general the same in all of these scenarios, similar to the cases discussed before where
the pump energy is set to 𝑛′ = 16 and above the band gap. Since differences between the
scenario of a resonant excitation of excitons with 𝑛′ = 16 and the plasma-scenario turned
out to be observable in the scaling of ̃𝛽(𝑛, 𝑛′), the discussion here is focused on the analysis
of the peak heights as a function of pump power Ppump.

Figure 6.11 shows the analysis of the data obtained in case of resonant pumping of the
state 𝑛′ = 12. In the left panel, the evaluation of differential peak heights is shown. The
data is stacked here for better comparison. Solid lines present fits to the linear pump power
range. Note that the data correction from Sec. 6.3 is not used here to make differences at low
pump powers visible. Interestingly, we find a nonlinear behavior at low pump powers for all
𝑛, which is - in contrast to the case of 𝑛′ = 16 discussed in Sec. 6.3 - a nonlinear change in
both directions. For 𝑛 ≤ 𝑛′ we find a nonlinear decrease and for 𝑛 > 𝑛′ a nonlinear increase
that transform into a linear behavior at higher powers, shown by the colored solid lines.
The nonlinear and linear regimes are separated by the black vertical line. Restricting the
analysis to the linear regime again leads to an 𝑛-dependent scaling of ̃𝛽(𝑛, 𝑛′) in satisfying
agreement with the model prediction for 𝑛′ = 12, as shown in Fig. 6.11 (b). The dots show
the experimental values and the solid line with grey area shows the model prediction in
analogy to Sec. 6.4. For 𝑛 > 18, there is no linear power dependence at all. For these states
the peak height increases nonlinearly and transforms directly into saturation.

In another scenario, the pump laser energy is set to 𝑛′ = 10 and, again, the progression
of differential peak heights as a function of pump power is extracted. The traces are shown
in Fig. 6.12. In general, the behavior looks quite similar to the case of 𝑛′ = 12. Also here,
the data shows a pronounced nonlinear evolution at low pump powers. Interestingly, its
sign changes around 𝑛′ = 10, meaning a decrease of transmission for 𝑛 < 𝑛′ and an increase
for 𝑛 > 𝑛′. Unlike in the case of 𝑛′ = 12, a linear regime cannot be identified for 𝑛 > 𝑛′.
The nonlinear increase directly transforms into saturation and an 𝑛-dependent scaling of

̃𝛽(𝑛, 𝑛′) cannot be extracted in this scenario.
The nonlinear regime seems to change its sign from negative to positive at 𝑛′ going from

lower to higher 𝑛. However, it should be noted that it is in general possible to observe such
a nonlinearity with negative sign also for 𝑛 > 𝑛′ in the case of extremely low pump powers.
This was shown in Ref. [Sch18].

The last scenario considered here is the resonant pumping of 1𝑆-Ortho excitons with the
same analysis used above. The strength of dipole coupling between 1𝑆 excitons and Rydberg
excitons seems to be negligible due to the small dipole moments of the ground state excitons.
However, an effect of noticeable strength on Rydberg states might stem from the creation
of an electron-hole plasma by Auger decay of the 1𝑆 excitons as considered in the rate
equations (5.14)-(5.17). Hence, the direct excitation of 1𝑆 excitons might result in similar
spectral changes as in the case of resonant excitation of electron-hole pairs (Sec. 6.5). With
this in mind, we directly compare the differential peak heights from the spectra where 1𝑆
excitons are resonantly excited with the scenarios 𝑛′ = 16 and pumping at 2.20 eV, which
is about 30 meV above the band gap, in Fig. 6.12 (b). The traces are shifted for clarity.
Open stars show the data for 𝑛′ = 16 revealing the linear increase discussed previously for
all 𝑛 in the power regime starting after a short range of nonlinear decrease at the beginning.
In direct comparison to the case where the pump laser energy is placed at 𝑛′ = 16, the
two other cases, namely pumping the 1𝑆 exciton resonantly and pumping above the band
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Figure 6.12 (a) Differential peak heights at 𝐸max for resonant excitation of 𝑛′ = 10. The
data shows a pronounced nonlinear regime at the beginning for all 𝑛 on the left side of the
vertical line. For 𝑛 < 10, the amplitude is decreasing, for 𝑛 > 10 it is increasing. While
in the first case, the nonlinearity is followed by a weak linear increase in Ppump, in the
second case it transforms into saturation. (b) Comparison of three pump-scenarios with
a pump energy at 𝑛′ = 16 (open stars), 𝑛′ = 1𝑆 (full dots) and above the band gap (full
squares) for 𝑛 = 8 to = 14. The scenario with 𝑛′ = 16 deviates from the others as it
shows a pronounced linear power regime for all 𝑛 depicted. Traces are shifted vertically
for clarity in both panels.

gap, mainly reveal a nonlinear dependence of the peak heights on pump power. Only at
low pump powers, a small range of pump powers can be found for the latter cases, where
the differential peak heights increase linearly with the pump power. However, this range
decreases drastically with 𝑛, as mentioned earlier in Sec. 6.5. While the absolute amplitude
is slightly different, the dependence on pump power seems to be quite similar when pumping
the 1𝑆 or above the band gap, which is in accordance with the similarity of both models
mentioned above.
In conclusion, the determination of an 𝑛-dependent scaling law in agreement with the

model prediction of the van der Waals interaction potential is possible for 𝑛′ = 12 as well,
because a power regime can be found, where the changes of the differential peak heights
depend linearly on the pump power. In case of lower 𝑛′, different interaction mechanisms
seem to occur since the pump power dependence of the peak heights deviates from the
expectations showing no pronounced linear dependence.
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6.7 Purifying effect
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Figure 6.13 (a) Absorption of scanned pump laser light. The red dashed line shows
the background absorption following Eq. (2.42) as a guide to the eye. (b) Absorption at
the resonance energy of 𝑛 = 14 as a function of pump laser energy. The absorption of
𝑛 = 14 changes corresponding to changes in the pump laser absorption. With increasing
pump energy the absorption decreases, while a sharp exponential increase of absorption
(purifying) is observed in the spectral vicinity of the band gap, indicated by the dashed
box. The red dashed line follows the background trace from panel (a) as a guide to the eye
up to the band gap, see text for details. In both panels, the black vertical line indicates
the resonance energy of the state 𝑛 = 14. The horizontal lines indicate the amplitude of
absorption at this energy without additional pump laser light obtained from Fig. 2.3.

In the sections before we noticed a nonlinear behavior of the differential transmission 𝛥𝐼
in dependence on pump power. It was found to occur for low pump powers and to saturate
fast. It was found to be mostly an increase of absorption in case of a pump laser energy
at 𝑛′ = 16, while in the scenarios 𝑛′ = 10 and ′ = 12 also a similar behavior of opposite
sign could be observed for states with 𝑛 > 𝑛′. Moreover, in the configurations with a pump
energy above the band gap and resonant on the 1𝑆 Ortho-exciton it is almost absent.

Here, we focus on this observation and study the case of an increase of absorption only, i.e.
a negative amplitude in the differential transmission. We will term this effect ”purifying”
of absorption lines, since it increases the absorption around the resonance energy. So far, a
comprehensive model of the underlying physics is not yet developed and, therefore, a solely

98



6.7 Purifying effect

experimental investigation is presented with a focus on the dependence on pump energy of
this effect. To this end, the pump-probe setup is changed concerning two minor aspects:
First, the pump laser energy is scanned continuously and the probe laser energy is fixed
onto a certain resonance, i.e. 𝑛 = 14 in this particular case. Hence, we achieve the full
information about the pump energy dependence. The probe laser power stays at a low level
of about 1 𝜇W. Second, the pump laser’s transmission is detected by a second photodiode
(PD3 in Fig. 3.1) while scanning the spectrum. Similar experiments were already reported
in [Fre16] using a differential signal, but their interpretation remained unclear. An even
earlier attempt was presented in Ref. [Kaz+14], but in a quite small spectral window. Here,
we achieve a deeper understanding of the data by using a more extended energy range and
by measuring the absorption directly.
Since it is known that this effect occurs at low pump powers, first of all a low pump

power of 2 𝜇W is used. The pump laser energy is scanned from 𝑛 = 2 up to 2.180 eV, i.e.
about 8 meV above the band gap. The obtained data is shown in Fig. 6.13. The upper
panel shows the absorption spectrum obtained by the detection of the scanned pump laser
light. Due to the low pump power of 2 𝜇W, the spectrum is comparable to the usual linear
absorption spectrum, as shown for example in Fig. 2.3 in Sec. 2.5. The red dashed line
traces the background absorption following Eq. (2.42). In panel (b) the absorption at the
resonance energy of 𝑛 = 14 as a function of the pump laser power is shown, measured by
the probe laser fixed to the resonance energy of this absorption peak. The black vertical
line indicates this energy in both panels and the black horizontal lines show the amplitude
of absorption at this resonance energy with zero pump laser power of 𝛼 ≈ 43.5 mm−1.
This value is obtained from the pure spectrum without external pump laser as shown
in Fig. 2.3 in Sec. 2.5. Knowing this value allows us to obtain the probe absorption in
absolute units. Now, the dependence of absorption at the resonance energy of 𝑛 = 14
on the pump laser energy becomes visible. Starting from 𝑛 = 2 towards higher energies,
first of all a decrease of the 𝑛 = 14 peak height below its unperturbed value is observed.
The overall changes in absorption at the resonance energy of 𝑛 = 14 follow the trace of
the continuous background absorption in the upper spectrum, whereas placing the pump
at the exciton absorption peaks leads to additional enhancements of this reduction within
the corresponding absorption linewidth. The red dashed line serves as a guide to the eye
following the general trace of the background absorption from panel (a), but with the
opposite sign and arbitrary amplitudes for the different phonon contributions. However, in
the regime close to the band gap the decrease of the 𝑛 = 14 peak height is superimposed by
a sharp exponential increase. This exponential trace can be described by an Urbach-tail-like
function as described in detail in Sec. 2.5, reading

𝛼U ∝ exp (𝐸 − ̃𝐸g)/𝐸U , (6.33)

and is indicated by the red dashed line close to the band gap. In the spectrally small
window around the band gap indicated by the rectangle in panel (b), the absorption signal
even shows an increase to values higher than the unpumped one. Hence, the absorption of
pump laser light in this spectral range leads to a growth of the absorption line of 𝑛 = 14
measured by the probe laser, which corresponds to the negative signals at 𝐸max in differential
transmission 𝛥𝐼.
We focus on this regime and show a closeup of the spectral range around the band gap

in Fig. 6.14. The increase of absorption of the 𝑛 = 14 peak follows the exponential function
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Figure 6.14 Closeup of the high energy range of Fig. 6.13. The exponentially increasing
background close to the band gap in the upper panel can be obtained from the trace of
the probe signal in the lower panel. The changes of the peak height of 𝑛 = 14 compared
to the height without pump of ℎ14(𝛿 = 0) ≈ 10 mm−1 are given by the right axis in the
lower panel. At a pump laser energy in the vicinity of the band gap ̃𝐸g, the peak height
of 𝑛 = 14 increases by about 12 % relative to the peak height without pump.

until it saturates around 2.172 eV, which is a value comparable to the shifted band gap
̃𝐸g for zero pump power, as indicated. The width of the exponential tail is found to be

𝐸U = 240 𝜇eV which is comparable to 𝐸U = 170 𝜇eV used in Sec. 2.5 (cf. Appendix A.2).
The same width is used to calculate the exponential tail of the dashed line in the upper
panel. Indeed, this finding confirms the existence and width of an exponential absorption
tail close to the band gap, that was found in Sec. 2.5 by the offsets 𝛼𝑃

0,𝑛 stemming from the
peak fitting routine (green dots in Fig. 2.3).

The right axis in the lower panel gives the change of absorption relative to the peak height
in terms of absorption of the 𝑛 = 14 resonance at zero pump power ℎ14(𝛿 = 0) ≈ 10 mm−1

(cf. Eq. (6.15)). The maximum growth of peak height is found to be about 12 %. Scanning
the pump laser to even higher energies than ̃𝐸g leads to a decrease of absorption for the
𝑛 = 14 peak height again, following an unknown nonlinear function. Moreover, also the
distinct exciton-induced changes seem to change their sign, the more the closer they are to
the band gap. This observation will be discussed later in the context of Fig. 6.16.

First, we conclude from these observations that the effect of purifying becomes partic-
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Figure 6.15 Probe absorption at the resonance energy of 𝑛 = 14 as a function of pump
energy shown for increasing pump powers from 5 𝜇W to 500 𝜇W from top to bottom. The
solid horizontal line indicates the amplitude of absorption at the resonance energy without
pump. Vertical lines mark excitonic principal quantum numbers as labeled on top. The
general trend of a decrease of the probed peak height is overlaid by the purifying effect in
the spectral vicinity of the band gap. Moreover, the maximum of the signal shifts to lower
energies with increasing pump power (arrow). At high pump powers it does not coincide
with the shifted band gap energy ̃𝐸g since distinct excitonic features are still observable
at higher energies, indicated by arrows in the inset.

ularly pronounced for pump energies around the band gap. The effect seems to saturate
close to the exact value of ̃𝐸g for the given pump power of 2 𝜇W.
Next, the changes in probe absorption for increasing pump powers are investigated. The

resulting spectra for pump powers from 5 to 500 𝜇W are shown in Fig. 6.15, again as
a function of pump energy. For all pump powers, we observe an increased absorption
around the band gap. Interestingly, the overall trend of decreasing absorption is partially
canceled out in this regime. For powers below 50 𝜇W, this leads to the growth of absorption
compared to the absorption at zero pump power, as observed at 2 𝜇W a well. For higher
powers, the growth of absorption is still present, but does not overcome the negative trend,
as it saturates at a certain magnitude. Additionally, due to saturation, the maximum of
this effect shifts to lower energies with increasing power, as indicated by the arrow. The
spectra of pump powers 100, 200 and 500 𝜇W even show excitonic absorption features on the
maximum’s high energy side. Hence, the shifted band gap 𝐸g is located on the high energy
side of this maximum as well and does not necessarily coincide with the energy of maximal
purifying. This can be seen in detail for 200 𝜇W in the inset of Fig. 6.16. The excitonic
features, given by the distinct peaks lying on the continuous background, are indicated by
arrows in the inset. They seem to change their sign around the saturation energy. Below
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Figure 6.16 (a) High energy regime of the pump laser absorption spectrum from Fig. 6.13
with a logarithmic energy scale. (b) Probe laser absorption with subtracted background.
The exciton-induced decreases of absorption in the probe signal coincide with the maxima
of pump absorption. Around 𝑛 = 11 the sign changes into an increase of absorption. In-
terestingly, the maximal increase is located on the high energy side of the pump resonance.
Vertical lines mark excitonic principal quantum numbers as labeled on top.

saturation the exciton excitation by the pump laser induces an increase of absorption in the
probe signal, whereas it induces a decrease of absorption at energies above the saturation
energy. This will be discussed in the following in more detail.

Finally, we focus on the exciton-induced changes. In this regard, the data of Fig. 6.13
is used and the background-induced part of the probe absorption is subtracted, which is
indicated by the red dashed line in the lower panel of that figure. The result is shown in
Fig. 6.16 (b). Remarkably, differences can be observed between the spectral positions of the
induced absorption features in the probe signal (lower panel) and the exciton resonances in
the pump spectrum (upper panel). The comparison is indicated by the vertical lines. For
low 𝑛 the situation is obvious: The pump laser induces a reduction of the probe absorption
when pumping an exciton. The energy of the maximum reduction in the probe signal
agrees with the maximum of pump laser absorption at a particular resonance. Around
𝑛 = 11 the sign of this effect seems to change and an increased absorption according to
the purifying effect can be observed. However, exact comparison reveals that the increase
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6.8 Conclusions

of absorption is induced by pump laser energies slightly above the resonance maximum.
Hence, the maximum absorption of the pump laser on an exciton resonance does not induce
the highest increase of absorption in the probe signal. A thorough explanation of this
observation is out of the scope of the present work and is the subject of ongoing research.
In the following, the observations mentioned above shall be summarized. The absorption

of pump laser light always leads to a change of the probed state absorption, even for primary
absorption into the phonon background. Here, the probe absorption follows the background
trace in a good approximation. The purifying effect is mainly caused by absorption in the
spectral range around the band gap. Still, the question remains which types of particles are
excited and thus are responsible for this increase in absorption. The exponential dependence
on pump energy of the increase in absorption reveals a close relation between the purifying
and the exponential absorption tail of the band gap. Within this tail, the linewidths are
broader and the oscillator strengths are smaller than expected leading to a reduced peak
height in the high 𝑛 regime (cf. Sec. 2.5). This purifying may be interpreted as a partial
neutralization of the effect causing this reduction.
Following the description in Ref. [Krü+20], the exponential absorption tail close to the

band gap results from charged impurities in the crystal (cf. Sec. 2.5). The highest Rydberg
states ionize due to the presence of spatially inhomogeneous micro-fields and lower the
continuum edge which results in the exponentially smeared out band gap. Light with an
energy falling into this spectral range might already excite a certain amount of free electron-
hole pairs which could recombine with the bound charges causing the micro-fields. In turn,
the observed reduction of peak height is partially neutralized at low pump powers leading to
an increase of absorption at the resonance energy. Saturation sets in as soon as all possible
recombination channels are occupied. Furthermore, this effect is superimposed by the onset
of possible blockade effects which cause the absorption to decrease after saturation.

6.8 Conclusions

In this chapter, several pump-probe scenarios were studied. Resonant pumping of 𝑛′ = 16
Rydberg states leads to distinct signatures in the differential transmission spectra that
can be explained by power-law interaction potentials between excitons. While a mean
field model fails to describe the spectra, the inclusion of correlations between excitons is
crucial to explain the observed features in detail. The changes of differential peak heights,
described by the parameter ̃𝛽(𝑛, 𝑛′), show an 𝑛-dependent scaling behavior in agreement
with dipole-dipole interactions of Förster- and van der Waals-type, but do not yield sufficient
information to differentiate between both mechanisms, similar to the case of the symmetric
Rydberg blockade (cf. [Kaz+14]). Finally, a detailed analysis of the resonance line’s spectral
shape helps to rule out the Förster-type mechanism and leaves only the van der Waals
interaction as the possible interaction mechanism. To exclude a plasma influence as a cause
for the observed features, the same analysis was presented for the scenario where the pump
laser energy is placed above the band gap. Remarkably, spectral features were observed that
might stem from a plasma relaxation into Rydberg states at low pump powers. Furthermore,
the 𝑛-dependent scaling of ̃𝛽(𝑛, 𝑛′), obtained in the range of low pump powers, was found
to be in contradiction to the Debye model discussed in Ch. 5.
In addition, further pump-scenarios were discussed, namely with a pump laser energy at
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𝑛′ = 12, 10 and the 1𝑆 Ortho-exciton. Also for 𝑛′ = 12 a scaling of ̃𝛽(𝑛, 𝑛′) in accordance
with the model prediction is obtained from the data, while no agreement in the case of
𝑛′ = 10 can be found. Here, the differential peak heights show a rather nonlinear behavior
for low pump powers, the sign of which depends on 𝑛 and 𝑛′. Interestingly, a linear regime,
as found in the cases of 𝑛′ = 12 and 𝑛′ = 16 is completely missing. The same holds for the
resonant pumping of the 1𝑆 Ortho-resonance where the results are comparable to those of
the plasma-scenario. Except in a small range of very low pump powers, the differential peak
heights show a mainly nonlinear behavior in dependence on pump power. The similarity of
the results in both pump-scenarios leads to the assumption, that the same type of particles
is created. This can be explained with the creation of an electron-hole plasma by Auger
decay of the resonantly excited 1𝑆 excitons, that finally leads to similar changes in the
spectra as in the case of a resonantly excited electron-hole plasma.

In total, various arguments were found, that the spectral changes observed while a high
Rydberg state with 𝑛′ ≥ 12 is resonantly excited are caused by long-range van der Waals
interactions. In order to achieve a deeper understanding of the underlying exciton-exciton
interactions with respect to the disagreement between theory and experiment at lower 𝑛,
comparing absolute values from the experiments to absolute values of 𝐶6(𝑛, 𝑛′) calculated
within the framework of a microscopic theory, would be a promising task.

In the last section of this chapter experiments were presented that focus on a deeper
understanding of the initial nonlinear behavior mentioned before, in particular the nonlinear
increase of absorption, termed purifying. It was shown, that this nonlinear increase is caused
by light absorption in the spectral range close to the band gap which is dominated by an
exponentially growing continuum. Based on a numerical model by Krüger et al., a possible
explanation for the observed increase of absorption was given: While pumping close to the
band gap, i.e. on Rydberg states with principal quantum numbers 𝑛 > 10, one always
excites free carriers due to the absorption into this growing continuum. These free charges
can neutralize a certain amount of charged impurities minimizing the perturbing influence of
the latter on high-𝑛 Rydberg excitons. As a consequence, the absorption of Rydberg exciton
resonances increases at very low pump powers. Since this effect is limited to energies close
to ̃𝐸g, it is almost not observable in the plasma-scenario or at a pump laser energy at
𝑛′ = 1𝑆.

The information about the dependence of the purifying effect on pump laser energy
obtained here will help to gain a better understanding of the mechanisms causing the
observed increase in absorption. This is of importance for future studies since this effect
is present in all absorption measurements using a laser with an energy set to a value in
the spectral range close to the band gap or, more accurately, to an energy of a state with
𝑛′ > 10.
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Chapter 7

Conclusions

In this thesis, many new insights into the physics of Rydberg excitons in Cu2O were obtained
by experimental high resolution studies in external fields and by pump-probe measurements.

In Chapter 4 many aspects of the behavior of Rydberg excitons in both external electric
and magnetic fields were studied. The focus laid on the evaluation of scaling laws for various
characteristic quantities in dependence on the principal quantum number 𝑛. It was possible
to determine scaling laws for the width of exciton multiplets by the activation of dark exciton
states in an electric field. Next, the polarizability of both 𝑆 and 𝑃 excitons was investigated
separately and the resonance field strength, where excitons from adjacent multiplets come
into resonance and form an avoided crossing as well as their energy separation at this
point was found to be in agreement with theoretical predictions. Finally, the electric field
strength for ionization of Rydberg excitons was found to follow an 𝑛 dependence as well. In
an external magnetic field, the field strength for the transition from Coulomb-bound states
to Landau level transitions as well as the resonance field strength of crossings between
adjacent multiplets was evaluated. Interestingly, most of the scaling laws found for excitons
are in agreement with known scaling laws for atoms.
The validation of these scaling laws shown in this thesis is of importance for the descrip-

tion of Rydberg excitons with high principal quantum numbers 𝑛 in external electric and
magnetic fields, where the density of states becomes too high to use a microscopic theory
for the description of the system. Hence, these results lay the basis for future studies of
Rydberg excitons with high principal quantum numbers 𝑛 in external fields. Here, one
can think about the investigation of excitonic states with giant electric dipole moments
and long lifetimes, which have been predicted theoretically in crossed electric and magnetic
fields [Kur+17]. Further, the study of exceptional points is a promising field as these have
also been predicted theoretically to be observable in Cu2O in combined electric and mag-
netic fields [Fel+16], but have not been observed experimentally yet.

Rydberg excitons are found to be not only sensitive to external fields but also to extremely
low densities of electron-hole plasmas, as presented in Chapter 5. The injection of free
electron-hole pairs by an additional pump laser with an energy above the band gap leads
to a lowering of the band gap and the corresponding disappearance of exciton lines into
the continuum, which is known as the Mott effect. The presented spectra allowed for the
first time for the investigation of the Mott effect in a semiconductor for highly excited
Rydberg states and with unprecedented resolution. A theory based on the Debye model
was used for an estimation of the relevant plasma densities and the description of the basic
observations such as the reduction of the band gap and decreasing oscillator strength in
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dependence on the plasma density. The plasma densities that lead to the disappearance of
the highest Rydberg excitons were found to be extremely low on the order of 0.01 𝜇m−3.
Hence, Rydberg excitons might serve as ultrasensitive probes of unbound electron-hole pairs
in their environment. Further, their high sensitivity can be used in future studies in the
field of low-density plasma physics to get a deeper understanding of the exact interaction
mechanisms of excitons with a surrounding plasma and to improve the theoretical many-
body models by comparison with experimental data [Sem+19].

Even without external illumination, the band gap was found to be shifted below its nomi-
nal value, finally limiting the highest observable principal quantum number. In this regard,
the experimental parameter space spanned by temperature and excitation power was in-
vestigated to find the highest observable Rydberg exciton. Temperatures down to 50 mK
and laser powers on the order of nW were applied. The Rydberg series that was so far
limited to 𝑛max = 25 could be extended to 𝑛max = 28, the highest Rydberg exciton state
ever observed. However, the extension of the Rydberg series is found to be neither limited
by thermal dissociation nor by the excitation power. Instead, the limitation stems from
the quality of the sample under consideration, so far attributed to the amount of charged
impurities in the crystal, which is in line with recent calculations [Krü+20]. Thus, the
observation of even higher Rydberg excitons with principal quantum numbers larger than
𝑛max = 28 requires extremely pure samples with impurity densities below 0.01 𝜇m−3, which
represents a challenging task for crystal growth.

Besides the investigation of the interaction with an electron-hole plasma, a comprehensive
study of the interactions among Rydberg excitons of different principal quantum numbers
was presented in Chapter 6. Various pump-probe experiments were discussed in which a
pump laser resonantly excites Rydberg excitons of a certain quantum number 𝑛′ and the re-
sponse of excitons with different quantum numbers 𝑛 is probed. Distinct spectral signatures
are observed in the optical response of the probed states that stem from strong dipole-dipole
interactions. While first indications of these were already found in Ref. [Kaz+14], the data
presented here additionally allows one to identify the exact type of dipole-dipole interaction:
It is found to be of long-range van der Waals-type rather than short-range Förster-type and
of mostly repulsive character.

For Rydberg atoms, strong dipole-dipole interactions are widely discussed as promising
mechanisms to enable a variety of applications in the field of quantum simulations [Saf+10]
and nonlinear quantum optics [Mur+16]. The identification of the exact type of interaction
potential reported here is a first step on the way to transfer those concepts from systems of
ultracold atoms to a Rydberg system in a semiconductor.

Even in the case of plasma excitation, indications for exciton-exciton interactions were
identified, as the overall line shape was found to be similar in both cases. Here, the formation
of unbound electron-hole pairs into Rydberg excitons might play a role. As the experiments
reported in this thesis are limited to CW-spectroscopy, future studies with time-resolved
pump-probe experiments might give a deeper insight into the relaxation dynamics of the
system.
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Appendix

A.1 Energies of all states
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Figure A.1 Absorption spectra of high angular momentum excitons. In pure absorption,
𝑛 = 6 (a) and 𝑛 = 7 (b) 𝐻 excitons are observable at a temperature of 760 mK. (c) The
detection of differential transmission allows for the observation of 𝑛 = 8 𝐹 and 𝐻 excitons.

Table A.1 summarizes all experimentally found resonance energies of the yellow series,
that are shown in Fig. 2.5 in Sec. 2.5. The 1𝑆 Para-exciton can be observed by the applica-
tion of an magnetic field or stress. The 1𝑆 Ortho-exciton and the 𝑃 excitons are taken from
Fig. 2.3 and the measurements at temperatures below 1 K, reported in Sec. 5.3. SHG-data
from Ref. [Mun+18] is used to determine the energies of the green 1𝑆 and the yellow 2𝑆
state. 𝑆 and 𝐷 excitons with 𝑛 > 2 can be activated by the application of an external
electric field and their dispersions in second derivative spectra can be traced back to zero
field, as explained in Sec. 4.1.
The high angular momentum states, namely 𝐹 and 𝐻 states, were investigated in

Ref. [The+15] by the application of small electric fields. To highlight the observability
of high angular momentum states without external fields, the relevant absorption spectra
are shown in Fig. A.1. 𝐻 excitons with principal quantum number 𝑛 = 6 and 𝑛 = 7 are
observable in pure absorption at temperatures below 1 K. For 𝑛 = 8, they can still be
observed in differential transmission spectra, obtained with a Lock-In amplifier in a pump
probe scheme, as explained in Chapters 3 or 6. 𝐺-shell states were observed for 𝑛 = 5 in
Ref. [Hec+17a]. For higher 𝑛, their energy is estimated to lie between the highest 𝐹 and
the 𝐻 state.
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Table A.1 Energies of excitons in the yellow series grouped by angular momenta in eV.
Green 1𝑆 energy: 2.15439 eV 3.

𝑛 𝑆 P 4 𝐷5/2
5 𝐷3

5 𝐹av
6 𝐺 7 𝐻 8

1
2.02066 (Para) 1

2.03279 (Ortho) 2

2 2.13750 3 2.148022

3 2.16027 5 2.161326
2.16183

2.163052.16202

4 2.16555 5 2.166093
2.16629

2.16677 2.1665472.16638
5 2.16801 5 2.168280 2.16865 2.168525 2.168557
6 2.16931 5 2.169478 2.16971 2.169611 2.169636 2.169647
7 2.17009 5 2.170186 2.17032 2.170267 2.170285 2.170292
8 2.17058 5 2.170637 2.17073 2.170695 2.170705 2.170708
9 2.17090 5 2.170946 2.17104 2.170995
10 2.17113 5 2.171165 2.171189
11 2.171327 2.171347
12 2.171448 2.171467
13 2.171543
14 2.171618
15 2.171678
16 2.171727
17 2.171768
18 2.171801
19 2.171830
20 2.171854
21 2.171874
22 2.171893
23 2.171908
24 2.171922
25 2.171934
26 2.171944
27 2.171954
28 2.171965
1 𝛤 +

2 Para-exciton, value from [Bra10].
2 𝛤 +

5 Ortho-exciton, fit to data in Fig. 2.3.
3 From SHG-spectrum shown in[Mun+18].
4 𝑛 = 2-22 from Fig. 2.3 at 1.35 K, 𝑛 = 23-28 from Fig. 5.12 at 110 mK. Fitted with fitting
routine described in A.3.

5 From white light spectra (second derivative) shown in [Hec+17a].
6 Mean value of three 𝐹 exciton peaks for each 𝑛. From [The+15].
7 𝑛 = 5: Estimated from Fig. 2b in [Hec+17a]. 𝑛 = 6-8: Estimated to be centered between
highest of three 𝑛𝐹 states and 𝑛𝐻 state.

8 From Fig. A.1.



A.2 Background trace
The background in Fig. 2.3 in Sec. 2.5 is described by Eq. (2.42). The obtained fit param-
eters shall be given here, in Tab. A.2.

Table A.2 Parameters to describe the background shown in Fig. 2.3.

Parameter Value Unit

𝑐𝛤 −
3

1𝑆𝑦 28.00 mm−1(
√
eV)−1

𝑐𝛤 −
4

1𝑆𝑦 10.00 mm−1(
√
eV)−1

𝑐𝛤 −
3

2𝑆𝑦 51.00 mm−1(
√
eV)−1

𝑐𝛤 −
3

1𝑆𝑔 2.6*𝑐𝛤 −
3

1𝑆𝑦 mm−1(
√
eV)−1

𝑐U 5.5 mm−1

𝐸U 170 𝜇eV
̃𝐸g 2.1719050 eV

𝑐cont 105 mm−1
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A.3 Fitting routine
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Figure A.2 The blue curve shows the absorption spectrum around 𝑛 = 14 with subtracted
background. The red curve shows the sum over all single peaks using three asymmetric
Lorentzians with free fit parameters (color dashed lines) and three Gaussian peaks with
fixed parameters (black dashed lines). The obtained offset 𝛼0𝑛 for 𝑛 = 14 has a negative
value.

In the following, the fitting routine, used to fit the absorption spectra, is explained. The
procedure was suggested by Prof. Stolz from University of Rostock. Figure A.2 shows an
example of a fit to the absorption lines of 𝑛 = 13, 𝑛 = 14 and 𝑛 = 15. As described
in Sec. 2.5, a single absorption peak is described by an asymmetric Lorentzian with an
area 𝑂𝑛, width 𝛤𝑛, asymmetry parameter 𝑞𝑛 and resonance energy 𝐸𝑛, see Eq. (2.43).
However, especially in the regime 𝑛 > 10, the tails of adjacent Lorentzian curves overlap
and contribute to a significant background, as shown by the dashed lines in Fig. A.2. Hence,
to obtain meaningful fit parameters for an absorption peak, the influence of both adjacent
peaks has to be taken into account by fitting three peaks at the same time. In addition,
the intermediate peaks are taken into account by Gaussian curves, each located on the high
energy side of a corresponding Lorentzian peak. For the Gaussian curves, the parameters of
area (𝑂G,𝑖), width (𝑤G,𝑖) and energy (𝐸G,𝑖) are fixed and chosen such that they reproduce
the intermediate peaks best. They are shown by black dashed lines. The parameters
describing the Lorentzian curves enter the fitting routine as variable fit parameters. In
addition, a variable offset 𝛼0,𝑛 is used. The fit function then reads

𝛼fit(𝑛) = 𝛼0,𝑛 +
𝑛+1

∑
𝑖=𝑛−1

+𝑂𝑖
𝜋

𝛤𝑖
2 + 2𝑞𝑖 (𝐸 − 𝐸𝑖)

(𝛤𝑖
2 )

2
+ (𝐸 − 𝐸𝑖)

2
+ 𝑂G,𝑖 exp(−

𝐸 − 𝐸G,𝑖

2𝑤G,𝑖
)

2

. (A.1)

It is fitted to the absorption spectrum with subtracted background, shown by the blue curve
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in Fig. A.2. In this case, the variable offset is found to be negative in the case for 𝑛 = 14,
as indicated by the black square and the resonance energies are slightly shifted to the high
energy side of each peak, shown by the vertical lines. The total fit function is shown by
the red line, in good agreement with the data for the middle peak. Hence, the obtained fit
parameters are used for the middle of the three peaks.
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List of Symbols

symbol meaning

𝛼 absorption coefficient
𝑎B exciton Bohr radius
𝑎B

H hydrogen Bohr radius
𝑎B

eff effective exciton Bohr radius
𝑎l = 4.26 Å lattice constant
A vector potential

𝛽(𝑛, 𝑛′) slope of linear response
̃𝛽(𝑛, 𝑛′) corrected slope of linear response

𝐵 = |B| magnetic field strength

𝛤 ±
𝑖 irreducible representation according to the 𝑂h symmetry group
̃𝛤 = 𝛤 − 2𝑖𝛿 -

𝛤; 𝛤𝑛 FWHM of exciton with quantum number 𝑛
𝑐 speed of light
𝐶3(𝑛, 𝑛′) Förster coefficient
𝐶6(𝑛, 𝑛′) van der Waals coefficient

𝛿 detuning from resonance energy
𝛿𝑛,𝑙 quantum defect
𝛿𝐾

𝑖𝑗 Kronecker symbol
𝛥a averaged self-energy of electron (𝑎 = 𝑒) or hole (𝑎 = ℎ)
𝛥 measured band gap shift
𝛥eh; 𝛥0 laser induced and inherent band gap shift
𝛥𝑛,𝑘 energy splitting of excitons with quantum numbers 𝑛 and 𝑘
𝛥so valence band split-off energy
𝑑 sample thickness
𝑑𝑛 = |d𝑛| electric dipole moment of exciton with quantum number 𝑛

𝜖0 vacuum permittivity
𝜖𝑠 = 7.5 static dielectric constant
ℰ = |𝓔| electric field amplitude
𝑒 elementary charge
̂e unit vector of polarization

𝐸pump pump laser energy
𝐸𝑛 resonance energy of exciton with quantum number 𝑛
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symbol meaning

𝐸𝑛,𝑛′ pair state energy of excitons with quantum numbers 𝑛 and 𝑛′

𝐸U Urbach tail width
𝐸g nominal band gap energy

̃𝐸g = 𝐸g + 𝛥 shifted band gap energy observable in the experiment
𝐸𝑋 total exciton energy
𝐸kin excitonic kinetic energy
𝐸b

𝑛,𝑙 excitonic binding energy
𝐸b,sc

𝑛 binding energy of an exciton in a plasma

𝑓𝑛 oscillator strength of exciton with quantum number 𝑛

𝑔; 𝑔𝑛 light-matter coupling strength

ℏ reduced Planck’s constant
ℎ(𝛿 = 0); ℎ𝑛(𝛿 = 0) peak height on resonance in absorption
𝐻OD = ℎ(𝛿 = 0)𝑑 peak height on resonance in optical density
𝐻e,0 single particle Hamiltonian for the electron without perturbation
𝐻a single particle Hamiltonian of electron (𝑎 = 𝑒) or hole (𝑎 = ℎ)
𝐻P

a Hamiltonian of single particle in a plasma
𝐻0 excitonic Hamiltonian in spherical approximation
𝐻so spin-orbit coupling term of the excitonic Hamiltonian
𝐻d 𝐻d term of the excitonic Hamiltonian
𝐻exch exchange interaction term of the excitonic Hamiltonian

𝐼T transmitted intensity
𝐼0 light intensity without absorption
𝛥𝐼 differential transmission
I valence band quasi spin

𝜅 inverse screening length
𝑘𝐵 Boltzmann constant
K = ke + kh exciton center-of-mass wave vector
𝑘 = |k| = 2𝜋

𝜆 wave vector of incident light

𝜆 wavelength of light
𝛬 thermal wavelength
l angular momentum operator
𝑙 angular momentum quantum number
𝑙𝑐,𝑛 magnetic length

𝜇−1 = 𝑚−1
e + 𝑚−1

h reduced mass
𝑚 magnetic quantum number
𝑚0 free electron mass
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Chapter 7 Conclusions

symbol meaning

𝑚e = 0.985 𝑚0 electron mass
𝑚h = 0.575 𝑚0 hole mass
𝑀 = 𝑚e + 𝑚h = 1.56 𝑚0 total mass

𝑛 principal quantum number
𝑛eff effective principal quantum number
𝑛̄ index of refraction

𝑂𝐷 optical density
𝑂𝑛 peak area

pa momentum of electron (𝑎 = 𝑒) and hole (𝑎 = ℎ)
𝑝 = |p| momentum of the relative motion of electron and hole
Ppump pump laser power

𝑞𝑛 asymmetry parameter

𝜌eh electron-hole density
𝜌𝑝 pump exciton density
𝑟𝑛,𝑙 exciton radius
re, rh coordinates of electron and hole
𝑟 = |r| = |re − rh| distance between electron and hole.
R = (𝑚ere + 𝑚hrh)/(𝑚e + 𝑚h) center of mass
𝑅 = |R| = |𝑅 − 𝑅′| distance between two excitons at R and R′

𝑅B = |RB| blockade radius
𝑅𝑦; 𝑅𝑦H excitonic and hydrogenic Rydberg energies

se; sh electron spin and hole spin

𝑇sc plasma screening temperature
𝑇Crystal crystal temperature

𝑉B blockade volume

𝜔 frequency of light
𝜔𝑛 resonance frequency of exciton with quantum number 𝑛
𝜔𝑐 cyclotron resonance

𝑥 = 𝛿/𝛤 normalized detuning
𝑋̂; 𝑋̂† exciton annihilation and creation operator

𝛷env
𝑛𝑙𝑚 envelope function of the electron-hole motion

𝛹𝑛𝑙𝑚 wave function of excitons with quantum numbers 𝑛, 𝑙 and 𝑚
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