Authors: Czogiel, I.
Luebke, K.
Weihs, C.
Title: Latent Factor Prediction Pursuit for Rank Deficient Regressors
Language (ISO): en
Abstract: In simulation studies Latent Factor Prediction Pursuit outperformed classical reduced rank regression methods. The algorithm described so far for Latent Factor Prediction Pursuit had two shortcomings. It was only implemented for situations where the explanatory variables were of full colum rank. Also instead of the projection matrix only the regression matrix was calculated. These problems are addressed by a new algorithm which finds the prediction optimal projection.
URI: http://hdl.handle.net/2003/20089
http://dx.doi.org/10.17877/DE290R-15681
Issue Date: 2004
Publisher: Universität Dortmund
Appears in Collections:Sonderforschungsbereich (SFB) 475

Files in This Item:
File Description SizeFormat 
75_04.pdfDNB144.1 kBAdobe PDFView/Open


This item is protected by original copyright



All resources in the repository are protected by copyright.