Authors: Einbeck, Jochen
Fried, Roland
Gather, Ursula
Title: Weighted Repeated Median Smoothing and Filtering
Language (ISO): en
Abstract: We propose weighted repeated median Filters and smoothers for robust non-parametric regression in general and for robust signal extraction from time series in particular. The proposed methods allow to remove outlying sequences and to preserve discontinuities (shifts) in the underlying regres- sion function (the signal) in the presence of local linear trends. Suitable weighting of the observations according to their distances in the design space reduces the bias arising from non-linearities. It also allows to improve the e±ciency of (unweighted) repeated median Filters using larger bandwidths, keeping their properties for distinguishing between outlier sequences and long-term shifts. Robust smoothers based on weighted L_1-regression are included for the reason of comparison.
Subject Headings: Breakdown point
Robust regression
Signal extraction
Issue Date: 2005-10-11T14:37:25Z
Appears in Collections:Sonderforschungsbereich (SFB) 475

Files in This Item:
File Description SizeFormat 
tr33-05.pdfDNB323.42 kBAdobe PDFView/Open

This item is protected by original copyright

Items in Eldorado are protected by copyright, with all rights reserved, unless otherwise indicated.