Authors: | Friedrich, Tobias Hebbinghaus, Nils He, Jun Neumann, Frank Witt, Carsten |
Title: | Approximating covering problems by randomized search heuristics using multi-objective models |
Language (ISO): | en |
Abstract: | The main aim of randomized search heuristics is to produce good approximations of optimal solutions within a small amount of time. In contrast to numerous experimental results, there are only a few theoretical results on this subject. We consider the approximation ability of randomized search for the class of covering problems and compare single-objective and multi-objective models for such problems. For the VertexCover problem, we point out situations where the multi-objective model leads to a fast construction of optimal solutions while in the single-objective case even no good approximation can be achieved within expected polynomial time. Examining the more general Set-Cover problem we show that optimal solutions can be approximated within a factor of log n, where n is the problem dimension, using the multi-objective approach while the approximation quality obtainable by the single-objective approach in expected polynomial time may be arbitrarily bad. |
URI: | http://hdl.handle.net/2003/26131 http://dx.doi.org/10.17877/DE290R-8706 |
Issue Date: | 2007-02 |
Appears in Collections: | Sonderforschungsbereich (SFB) 531 |
This item is protected by original copyright |
If no CC-License is given, pleas contact the the creator, if you want to use thre resource other than only read it.