Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dette, Holger | de |
dc.contributor.author | Volgushev, Stanislav | de |
dc.date.accessioned | 2009-10-29T10:23:21Z | - |
dc.date.available | 2009-10-29T10:23:21Z | - |
dc.date.issued | 2009-09-16 | de |
dc.identifier.uri | http://hdl.handle.net/2003/26495 | - |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-12665 | - |
dc.description.abstract | We consider the problem of nonparametric quantile regression for twice censored data. Two new estimates are presented, which are constructed by applying concepts of monotone rearrangements to estimates of the conditional distribution function. The proposed methods avoid the problem of crossing quantile curves. Weak uniform consistency and weak convergence is established for both estimates and their finite sample properties are investigated by means of a simulation study. As a by-product, we obtain a new result regarding the weak convergence of the Beran estimator for right censored data on the maximal possible domain, which is of its own interest. | en |
dc.language.iso | en | de |
dc.relation.ispartofseries | Discussion Paper / SFB 823; 23/2009 | de |
dc.subject | Beran estimator | en |
dc.subject | censored data | en |
dc.subject | crossing quantile curves | en |
dc.subject | monotone rearrangements | en |
dc.subject | quantile regression | en |
dc.subject | survival analysis | en |
dc.subject.ddc | 310 | de |
dc.subject.ddc | 330 | de |
dc.subject.ddc | 620 | de |
dc.title | Nonparametric quantile regression for twice censored data | en |
dc.type | Text | de |
dc.type.publicationtype | report | de |
dcterms.accessRights | open access | - |
Appears in Collections: | Sonderforschungsbereich (SFB) 823 |
This item is protected by original copyright |
Items in Eldorado are protected by copyright, with all rights reserved, unless otherwise indicated.