Authors: Dette, Holger
Preuß, Philip
Vetter, Mathias
Title: A measure of stationarity in locally stationary processes with applications to testing
Language (ISO): en
Abstract: In this paper we investigate the problem of measuring deviations from stationarity in locally stationary time series. Our approach is based on a direct estimate of the L²-distance between the spectral density of the locally stationary process and its best approximation by a spectral density of a stationary process. An explicit expression of the minimal distance is derived, which depends only on integrals of the spectral density of the stationary process and its square. These integrals can be estimated directly without estimating the spectral density, and as a consequence, the estimation of the measure of stationarity does not require the specification of smoothing parameters. We show weak convergence of an appropriately standardized version of the statistic to a standard normal distribution. The results are used to construct confidence intervals for the measure of stationarity and to develop a new test for the hypothesis of stationarity which does not require regularization. Finally, we investigate the finite sample properties of the resulting confidence intervals and tests by means of a small simulation study and illustrate the methodology in three data examples. AMS subject classification: 62M10, 62M15, 62G10
Subject Headings: Goodness-of-fit test
Integrated periodogram
L²-distance
Locally stationary process
Non stationary process
Spectral density
URI: http://hdl.handle.net/2003/27323
http://dx.doi.org/10.17877/DE290R-15953
Issue Date: 2010-08-03
Appears in Collections:Sonderforschungsbereich (SFB) 823

Files in This Item:
File Description SizeFormat 
DP_3210_SFB823_dette_preuß_vetter.pdfDNB607.31 kBAdobe PDFView/Open


This item is protected by original copyright



All resources in the repository are protected by copyright.