Authors: Wendler, Martin
Title: U-quantile processes and generalized linear statistics of dependent data
Language (ISO): en
Abstract: Generalized linear statistics are a unifying class that contains U-statistics, U-quantiles, L-statistics as well as trimmed and winsorized U-statistics. For example, many commonly used estimators of scale fall into this class. GL-statistics only have been studied under independence; in this paper, we establish the central limit theorem (CLT) and the law of the iterated logarithm (LIL) for GL-statistics of sequences which are strongly mixing or L^1 near epoch dependent on an absolutely regular process. We first investigate the empirical U-process. With the help of a generalized Bahadur representation, the CLT and the LIL for the empirical U-quantile process follow. As GL-statistics are linear functionals of the U-quantile process, the CLT and the LIL for GL-statistics are straightforward corollaries.
Subject Headings: Bahadur representation
near epoch dependence
Issue Date: 2010-10-12
Appears in Collections:Sonderforschungsbereich (SFB) 823

Files in This Item:
File Description SizeFormat 
DP_3910_SFB823_wendler.pdfDNB554.53 kBAdobe PDFView/Open

This item is protected by original copyright

Items in Eldorado are protected by copyright, with all rights reserved, unless otherwise indicated.