Authors: Engelke, Sebastian
Woerner, Jeannette H. C.
Title: A unifying approach to fractional Lévy processes
Language (ISO): en
Abstract: Starting from the moving average representation of fractional Brownian motion fractional Lévy processes have been constructed by keeping the same moving average kernel and replacing the Brownian motion by a pure jump Lévy process with finite second moments. Another way was to replace the Brownian motion by an alpha-stable Lévy process and the exponent in the kernel by H-1/alpha. We now provide a unifying approach taking kernels of the form a((t-s)_+^gamma - (-s)_+^gamma) + b((t-s)_-^gamma - (-s)_-^gamma), where gamma can be chosen according to the existing moments and the Blumenthal-Getoor index of the underlying Lévy process. These processes may exhibit both long and short range dependence. In addition we will examine further properties of the processes, e.g. regularity of the sample paths and the semimartingale property. MSC 2010: 60G22, 60E07
Subject Headings: Blumenthal-Getoor index
Fractional Brownian motion
Fractional Lévy process
Linear fractional stable motion
Long-range dependence
Issue Date: 2010-12-21
Appears in Collections:Sonderforschungsbereich (SFB) 823

Files in This Item:
File Description SizeFormat 
DP_5010_SFB823_engelke_woerner.pdfDNB281.01 kBAdobe PDFView/Open

This item is protected by original copyright

All resources in the repository are protected by copyright.