Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Turek, Stefan | - |
dc.contributor.author | Köster, Michael | - |
dc.date.accessioned | 2011-12-21T14:39:09Z | - |
dc.date.available | 2011-12-21T14:39:09Z | - |
dc.date.issued | 2011-12-21 | - |
dc.identifier.uri | http://hdl.handle.net/2003/29239 | - |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-6950 | - |
dc.description.abstract | Active flow control plays a central role in many industrial applications such as e.g. control of crystal growth processes, where the flow in the melt has a significant impact on the quality of the crystal. Optimal control of the flow by electro-magnetic fields and/or boundary temperatures leads to optimisation problems with PDE constraints, which are frequently governed by the time-dependent Navier-Stokes equations. The mathematical formulation is a minimisation problem with PDE constraints. By exploiting the special structure of the first order necessary optimality conditions, the so called Karush-Kuhn-Tucker (KKT)-system, this thesis develops a special hierarchical solution approach for such equations, based on the distributed control of the Stokes-- and Navier--Stokes. The numerical costs for solving the optimisation problem are only about 20-50 times higher than a pure forward simulation, independent of the refinement level. Utilising modern multigrid techniques in space, it is possible to solve a forward simulation with optimal complexity, i.e., an appropriate solver for a forward simulation needs O(N) operations, N denoting the total number of unknowns for a given computational mesh in space and time. Such solvers typically apply appropriate multigrid techniques for the linear subproblems in space. As a consequence, the developed solution approach for the optimal control problem has complexity O(N) as well. This is achieved by a combination of a space-time Newton approach for the nonlinearity and a monolithic space-time multigrid approach for 'global' linear subproblems. A second inner monolithic multigrid method is applied for subproblems in space, utilising local Pressure-Schur complement techniques to treat the saddle-point structure. The numerical complexity of this algorithm distinguishes this approach from adjoint-based steepest descent methods used to solve optimisation problems in many practical applications, which in general do not satisfy this complexity requirement. | en |
dc.language.iso | en | de |
dc.subject | Block-Glätter | de |
dc.subject | Block smoother | en |
dc.subject | CFD | en |
dc.subject | Crank-Nicolson | en |
dc.subject | Crystal growth | en |
dc.subject | Czochralski | de |
dc.subject | Distributed Control | en |
dc.subject | Edge-oriented stabilisation | en |
dc.subject | Elliptic | en |
dc.subject | Elliptisch | de |
dc.subject | EOJ stabilisation | en |
dc.subject | EOJ Stabilisierung | de |
dc.subject | FEAT | en |
dc.subject | FEATFLOW | en |
dc.subject | Finite Elemente | de |
dc.subject | Finite Elements | en |
dc.subject | First discretise then optimise | en |
dc.subject | First discretize then optimize | en |
dc.subject | First optimise then discretise | en |
dc.subject | First optimize then discretize | en |
dc.subject | Flow-Around-Cylinder | en |
dc.subject | Full Newton-SAND | en |
dc.subject | Heat equation | en |
dc.subject | Hierarchical | en |
dc.subject | Hierarchical solution concept | en |
dc.subject | Hierarchisch | de |
dc.subject | Hierarchisches Lösungskonzept | de |
dc.subject | Inexact Newton | en |
dc.subject | Inexaktes Newton-Verfahren | de |
dc.subject | Instationär | de |
dc.subject | Inverse Probleme | de |
dc.subject | Inverse Problems | en |
dc.subject | Kantenbasierte Stabilisierung | de |
dc.subject | KKT system | en |
dc.subject | Kristallwachstum | de |
dc.subject | Krylov | de |
dc.subject | Large-Scale | en |
dc.subject | linear complexity | en |
dc.subject | lineare Komplexität | de |
dc.subject | Mehrgitter | de |
dc.subject | Mehrgitter-Krylov | de |
dc.subject | Monolithic | en |
dc.subject | Monolithisch | de |
dc.subject | Multigrid | en |
dc.subject | Multigrid-Krylov | en |
dc.subject | Multilevel | en |
dc.subject | Navier-Stokes | de |
dc.subject | Nichtparametrische Finite Elemente | de |
dc.subject | Nonparametric finite elements | en |
dc.subject | Nonstationary | en |
dc.subject | OPTFLOW | en |
dc.subject | Optimierung | de |
dc.subject | Optimisation | en |
dc.subject | Optimization | en |
dc.subject | PDE Constraints | en |
dc.subject | Raum-Zeit | de |
dc.subject | saddle point | en |
dc.subject | SAND | en |
dc.subject | Sattelpunkt | de |
dc.subject | Schur complement preconditioning | en |
dc.subject | Schurkomplement-Vorkonditionierer | de |
dc.subject | Space-time | en |
dc.subject | SQP | en |
dc.subject | Stokes | de |
dc.subject | Theta schema | en |
dc.subject | Theta scheme | en |
dc.subject | Time-dependent | en |
dc.subject | Transient | en |
dc.subject | Unstructured Grids | en |
dc.subject | Unstrukturierte Gitter | de |
dc.subject | Vanka | de |
dc.subject | Verteilte Kontrolle | de |
dc.subject | Wärmeleitung | de |
dc.subject | Wärmeleitungsgleichung | de |
dc.subject.ddc | 510 | - |
dc.title | A Hierarchical Flow Solver for Optimisation with PDE Constraints | en |
dc.type | Text | de |
dc.contributor.referee | Meyer, Christian | - |
dc.date.accepted | 2011-11-23 | - |
dc.type.publicationtype | doctoralThesis | de |
dcterms.accessRights | open access | - |
Appears in Collections: | Lehrstuhl III Angewandte Mathematik und Numerik |
This item is protected by original copyright |
This item is protected by original copyright rightsstatements.org