Full metadata record
DC FieldValueLanguage
dc.contributor.advisorTurek, Stefan-
dc.contributor.authorKöster, Michael-
dc.date.accessioned2011-12-21T14:39:09Z-
dc.date.available2011-12-21T14:39:09Z-
dc.date.issued2011-12-21-
dc.identifier.urihttp://hdl.handle.net/2003/29239-
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-6950-
dc.description.abstractActive flow control plays a central role in many industrial applications such as e.g. control of crystal growth processes, where the flow in the melt has a significant impact on the quality of the crystal. Optimal control of the flow by electro-magnetic fields and/or boundary temperatures leads to optimisation problems with PDE constraints, which are frequently governed by the time-dependent Navier-Stokes equations. The mathematical formulation is a minimisation problem with PDE constraints. By exploiting the special structure of the first order necessary optimality conditions, the so called Karush-Kuhn-Tucker (KKT)-system, this thesis develops a special hierarchical solution approach for such equations, based on the distributed control of the Stokes-- and Navier--Stokes. The numerical costs for solving the optimisation problem are only about 20-50 times higher than a pure forward simulation, independent of the refinement level. Utilising modern multigrid techniques in space, it is possible to solve a forward simulation with optimal complexity, i.e., an appropriate solver for a forward simulation needs O(N) operations, N denoting the total number of unknowns for a given computational mesh in space and time. Such solvers typically apply appropriate multigrid techniques for the linear subproblems in space. As a consequence, the developed solution approach for the optimal control problem has complexity O(N) as well. This is achieved by a combination of a space-time Newton approach for the nonlinearity and a monolithic space-time multigrid approach for 'global' linear subproblems. A second inner monolithic multigrid method is applied for subproblems in space, utilising local Pressure-Schur complement techniques to treat the saddle-point structure. The numerical complexity of this algorithm distinguishes this approach from adjoint-based steepest descent methods used to solve optimisation problems in many practical applications, which in general do not satisfy this complexity requirement.en
dc.language.isoende
dc.subjectBlock-Glätterde
dc.subjectBlock smootheren
dc.subjectCFDen
dc.subjectCrank-Nicolsonen
dc.subjectCrystal growthen
dc.subjectCzochralskide
dc.subjectDistributed Controlen
dc.subjectEdge-oriented stabilisationen
dc.subjectEllipticen
dc.subjectElliptischde
dc.subjectEOJ stabilisationen
dc.subjectEOJ Stabilisierungde
dc.subjectFEATen
dc.subjectFEATFLOWen
dc.subjectFinite Elementede
dc.subjectFinite Elementsen
dc.subjectFirst discretise then optimiseen
dc.subjectFirst discretize then optimizeen
dc.subjectFirst optimise then discretiseen
dc.subjectFirst optimize then discretizeen
dc.subjectFlow-Around-Cylinderen
dc.subjectFull Newton-SANDen
dc.subjectHeat equationen
dc.subjectHierarchicalen
dc.subjectHierarchical solution concepten
dc.subjectHierarchischde
dc.subjectHierarchisches Lösungskonzeptde
dc.subjectInexact Newtonen
dc.subjectInexaktes Newton-Verfahrende
dc.subjectInstationärde
dc.subjectInverse Problemede
dc.subjectInverse Problemsen
dc.subjectKantenbasierte Stabilisierungde
dc.subjectKKT systemen
dc.subjectKristallwachstumde
dc.subjectKrylovde
dc.subjectLarge-Scaleen
dc.subjectlinear complexityen
dc.subjectlineare Komplexitätde
dc.subjectMehrgitterde
dc.subjectMehrgitter-Krylovde
dc.subjectMonolithicen
dc.subjectMonolithischde
dc.subjectMultigriden
dc.subjectMultigrid-Kryloven
dc.subjectMultilevelen
dc.subjectNavier-Stokesde
dc.subjectNichtparametrische Finite Elementede
dc.subjectNonparametric finite elementsen
dc.subjectNonstationaryen
dc.subjectOPTFLOWen
dc.subjectOptimierungde
dc.subjectOptimisationen
dc.subjectOptimizationen
dc.subjectPDE Constraintsen
dc.subjectRaum-Zeitde
dc.subjectsaddle pointen
dc.subjectSANDen
dc.subjectSattelpunktde
dc.subjectSchur complement preconditioningen
dc.subjectSchurkomplement-Vorkonditioniererde
dc.subjectSpace-timeen
dc.subjectSQPen
dc.subjectStokesde
dc.subjectTheta schemaen
dc.subjectTheta schemeen
dc.subjectTime-dependenten
dc.subjectTransienten
dc.subjectUnstructured Gridsen
dc.subjectUnstrukturierte Gitterde
dc.subjectVankade
dc.subjectVerteilte Kontrollede
dc.subjectWärmeleitungde
dc.subjectWärmeleitungsgleichungde
dc.subject.ddc510-
dc.titleA Hierarchical Flow Solver for Optimisation with PDE Constraintsen
dc.typeTextde
dc.contributor.refereeMeyer, Christian-
dc.date.accepted2011-11-23-
dc.type.publicationtypedoctoralThesisde
dcterms.accessRightsopen access-
Appears in Collections:Lehrstuhl III Angewandte Mathematik und Numerik

Files in This Item:
File Description SizeFormat 
phd.pdfDNB5.65 MBAdobe PDFView/Open


This item is protected by original copyright



This item is protected by original copyright rightsstatements.org