Authors: Dette, Holger
Volgushev, Stanislav
Wagener, Jens
Title: Censored quantile regression processes under dependence and penalization
Language (ISO): en
Abstract: We consider quantile regression processes from censored data under dependent data structures and derive a uniform Bahadur representation for those processes. We also consider cases where the dimension of the parameter in the quantile regression model is large. It is demonstrated that traditional penalization methods such as the adaptive lasso yield sub-optimal rates if the coe fficients of the quantile regression cross zero. New penalization techniques are introduced which are able to deal with speci c problems of censored data and yield estimates with an optimal rate. In contrast to most of the literature, the asymptotic analysis does not require the assumption of independent observations, but is based on rather weak assumptions, which are satis ed for many kinds of dependent data.
Subject Headings: Bahadur representation
censored data
dependent data
quantile regression
variable selection
weak convergence
Issue Date: 2012-08-28
Appears in Collections:Sonderforschungsbereich (SFB) 823

Files in This Item:
File Description SizeFormat 
DP_3412_sfb823_Volgushev_Wagener_Dette.pdfDNB460.32 kBAdobe PDFView/Open

This item is protected by original copyright

All resources in the repository are protected by copyright.