Authors: Berens, Tobias
Wied, Dominik
Ziggel, Daniel
Title: A completely automated optimization strategy for global minimum-variance portfolios based on a new test for structural breaks
Language (ISO): en
Abstract: We present a completely automated optimization strategy which combines the classical Markowitz mean-variance portfolio theory with a recently proposed test for structural breaks in co- variance matrices. With respect to equity portfolios, global minimum-variance optimizations, which base solely on the covariance matrix, yield considerable results in previous studies. However, nancial assets cannot be assumed to have a constant covariance matrix over longer periods of time. Hence, we estimate the covariance matrix of the assets by respecting potential change points. The resulting approach resolves issues like timing or determining a sample for parameter estimation. Moreover, we apply the approach to two datasets and compare the results to relevant benchmark techniques by means of an out-of-sample study. It is shown that the new approach outperforms equally weighted portfolios and plain minimum-variance portfolios on average.
Subject Headings: fluctuation test
portfolio optimization
structural break
Issue Date: 2013-05-13
Appears in Collections:Sonderforschungsbereich (SFB) 823

Files in This Item:
File Description SizeFormat 
DP_1913_SFB823_Berens_Wied_Ziggel.pdfDNB654.04 kBAdobe PDFView/Open

This item is protected by original copyright

All resources in the repository are protected by copyright.