**Eldorado**

Resources for and from Research, Teaching and Studying

### Recent Submissions

In this paper, we stabilize and limit continuous Galerkin discretizations of a linear transport equation using an algebraic approach to derivation of artificial diffusion operators. Building on recent advances in the analysis and design of edge-based algebraic flux correction schemes for singularly perturbed convection-diffusion problems, we derive algebraic stabilization operators that generate nonlinear high-order stabilization in smooth regions and enforce discrete maximum principles every...

This thesis is concerned with the differential sensitivity analysis of elliptic variational inequalities of the first and the second kind in finite and infinite dimensions. We develop a general theory that provides a sharp criterion for the Hadamard directional differentiability of the solution operator to an elliptic variational inequality and introduce several tools that facilitate the sensitivity analysis in practical applications. Our analysis is accompanied by examples from mechanics ...

Second and higher order numerical approximations of conservation laws for vector fields call for the use of limiting techniques based on generalized monotonicity criteria. In this paper, we introduce a family of directional vertexbased slope limiters for tensor-valued gradients of formally second-order accurate piecewise-linear discontinuous Galerkin (DG) discretizations. The proposed methodology enforces local maximum principles for scalar products corresponding to projections of a vector fi...

In this article we introduce a FCT stabilized Radial Basis Function (RBF)-Finite Difference (FD) method for the numerical solution of convection dominated problems. The proposed algorithm is designed to maintain mass conservation and to guarantee positivity of the solution for an almost random placement of scattered data nodes. The method can be applicable both for problems defined in a domain or if equipped with level set techniques, on a stationary manifold. We demonstrate the numerical beh...

In the present paper, we use modified shallow water equations (SWE) to reconstruct the bottom topography (also called bathymetry) of a flow domain without resorting to traditional inverse modeling techniques such as adjoint methods. The discretization in space is performed using a piecewise linear discontinuous Galerkin (DG) approximation of the free surface elevation and (linear) continuous finite elements for the bathymetry. Our approach guarantees compatibility of the discrete forward and ...

We introduce a new level set method for representing evolving interfaces. In the case of divergence-free velocity fields, the new method satisfies a conservation principle. Conservation is important for many applications such as modeling two-phase incompressible flow. In the present implementation, the conserved quantity is defined as the integral of a smoothed characteristic function. The new approach embeds level sets into a volume of fluid formulation. The evolution of an approximate signe...

This work extends the algebraic flux correction (AFC) paradigm to finite element discretizations of conservation laws for symmetric tensor fields. The proposed algorithms are designed to enforce discrete maximum principles and preserve the eigenvalue range of evolving tensors. To that end, a continuous Galerkin approximation is modified by adding a linear artificial diffusion operator and a nonlinear antidiffusive correction. The latter is decomposed into edge-based fluxes and constrained to ...

Recently, we devised an approach to a posteriori error analysis, which clarifies the role of oscillation and where oscillation is bounded in terms of the current approximation error. Basing upon this approach, we derive plain convergence of adaptive linear finite elements approximating the Poisson problem. The result covers arbritray H^-1-data and characterizes convergent marking strategies.

The purpose of present study is to numerically investigate the natural convection flow of Ostwalde-de Waele type power law non-Newtonian fluid along the surface of rotating axi-symmetric round-nosed body. For computational purpose rotating hemisphere is used as a case study in order to examine the heat transfer mechanism near such transverse curvature geometries. The numerical scheme is applied after converting the dimensionless system of equations into primitive variable formulations. Implic...

In an unconventional approach to combining the very successful Finite Element Methods (FEM) for PDE-based simulation with techniques evolved from the domain of Machine Learning (ML) we employ approximate inverses of the system matrices generated by neural networks in the linear solver. We demonstrate the success of this solver technique on the basis of the Poisson equation which can be seen as a fundamental PDE for many practically relevant simulations [Turek 1999]. We use a basic Richardson ...

Based on the benchmark results in [1] for a 2D rising bubble, we present the extension towards 3D providing test cases with corresponding reference results, following the suggestions in [2]. Additionally, we include also an axisymmetric configuration which allows 2.5D simulations and which provides further possibilities for validation and evaluation of numerical multiphase flow components and software tools in 3D.

In this article we present a Radial Basis Function (RBF)-Finite Difference (FD) level set based method for numerical solution of partial differential equations (PDEs) of the reaction-diffusion-convection type on an evolving-in-time hypersurface Γ (t). In a series of numerical experiments we study the accuracy and robustness of the proposed scheme and demonstrate that the method is applicable to practical models.

An analysis is performed to study the two-phase natural convection flow of nano fluid along a vertical wavy surface. The model includes equations expressing conservation of total mass, momentum and thermal energy for two-phase nano fluid. Primitive variable formulations (PVF) are used to transform the dimensionless boundary layer equations into a convenient coordinate system and the resulting equations are integrated numerically via implicit finite difference iterative scheme. The effect ...

We revisit the MIT Benchmark 2001 and introduce a viscoelastic constitutive law into the fluid in motion. Our goal is to study the effect of viscoelasticity into the periodical behavior of the physical quantities of the corresponding benchmark. We use a robust numerical technique in simulating complex fluid flow problems based on higher order Finite Element discretization. While marching in time, an A-stable method of second order is favorable, i.e Crank-Nicolson scheme, to reproduce peri...

This dissertation presents a fully implicit, monolithic finite element solution scheme to effectively solve the governing set of differential algebraic equations of incompressible poroelastodynamics. Thereby, a two-dimensional, biphasic, saturated porous medium model with intrinsically coupled and incompressible solid and fluid constituents is considered. Our schemes are based on some well-accepted CFD techniques, originally developed for the efficient simulation of incompressible flow proble...

We study combinatorial problems with ellipsoidal uncertainty in the objective function concerning their theoretical and practical solvability. Ellipsoidal uncertainty is a natural model when the coefficients are normally distributed random variables. Robust versions of typical combinatorial problems can be very hard to solve compared to their linear versions. Complexity and approaches differ fundamentally depending on whether uncorrelated or correlated uncertainty occurs. We distinguish betw...

The paper presents a goal-oriented error control based on the dual weighted residual method (DWR) for the ﬁnite cell method (FCM), which is characterized by an enclosing domain covering the domain of the problem. The error identity derived by the DWR method allows for a combined treatment of the discretization and quadrature error introduced by the FCM. We present an adaptive strategy with the aim to balance these two error contributions. Its performance is demonstrated for some two-dimension...

We develop a general convergence theory for adaptive discontinu- ous Galerkin methods for elliptic PDEs covering the popular SIPG, NIPG and LDG schemes as well as all practically relevant marking strategies. Another key feature of the presented result is, that it holds for penalty parameters only necessary for the standard analysis of the respective scheme. The analysis is based on a quasi interpolation into a newly developed limit space of the adaptively create...

In this paper, we present an entropy stable scheme for solving the compressible Navier-Stokes equations in two space dimensions. Our scheme uses entropy variables as degrees of freedom. It is an extension of an existing spacetime discontinuous Galerkin method for solving the compressible Euler equations. The physical diffusion terms are incorporated by means of the symmetric (SIPG) or nonsymmetric (NIPG) interior penalty method, resulting in the two versions ST-SDSC-SIPG and ST-SDSC-NIP...

This thesis is concerned with new numerical and algorithmic tools for flows with pressure and shear dependent viscosity together with the necessary background of the generalized Navier-Stokes equations. In general the viscosity of a material can be constant, e.g. water and this kind of fluid is called as Newtonian fluid. However the flow can be complicated for quasi-Newtonian fluid, where the viscosity can depend on some physical quantity. For example, the viscosity of Bingham fluid is a fun...